

Welcome to Connectors’ documentation!

The Connectors package facilitates the writing of block-diagram-like processing networks.
For this it provides decorators for the methods of processing classes, so they can be connected to each other.
When a parameter in such a processing network is changed, the result values will also be updated automatically.
This is similar to a pipes and filters architecture, the observer pattern or streams.

This short example demonstrates the core functionality of the Connectors package by implementing a processing network of two sequential blocks, which double their input value:

[image: digraph Measurement{ rankdir=LR; empty1 -> double1 -> double2 -> empty2; empty1 [label="", shape=none]; double1 [label="·2", shape=box]; double2 [label="·2", shape=box]; empty2 [label="", shape=none]; }]

>>> import connectors
>>>
>>> class TimesTwo:
... def __init__(self, value=0):
... self.__value = value
...
... @connectors.Input("get_double")
... def set_value(self, value):
... self.__value = value
...
... @connectors.Output()
... def get_double(self):
... return 2 * self.__value
>>>
>>> d1 = TimesTwo() # create an instance that doubles its input value
>>> d2 = TimesTwo().set_value.connect(d1.get_double) # create a second instance and connect it to the first
>>> d2.get_double()
0
>>> d1.set_value(2)
>>> d2.get_double() # causes the new input value 2 to be processed by d1 and d2
8

Contents

	1. Reference
	1.1. Decorators

	1.2. Connectors

	1.3. Configuration options

	1.4. Helper functionalities

	1.5. Macro connectors for encapsulating processing networks in a class

	1.6. Processing blocks for common tasks

	1.7. Internal features

	2. Organisation
	2.1. Installation

	2.2. Dependencies

	2.3. Makefile targets

	2.4. Licenses

	3. Information
	3.1. Lazy execution

	3.2. Caching

	3.3. Automated parallelization

	3.4. Implementation details

	4. Tutorials
	4.1. Measuring a transfer function (demonstrates the core functionalities)

	4.2. Impementing a multiplexer (demonstrates the use of a multi-input connector as arbitrarily many single-input connectors)

	4.3. Improving the multiplexer (demonstrates avoiding unneccessary computations with conditional input connectors)

	4.4. Implementing a polynomial (demonstrates the encapsulation of a processing network in a single class with macro connectors)

	4.5. Improving the polynomial implementation (demonstrates memory saving techniques)

Indices and tables

	Index

	Search Page

1. Reference

This section contains the API reference for the Connectors package.

	1.1. Decorators

	1.2. Connectors
	1.2.1. Connectors for setter methods

	1.2.2. Connectors for getter methods

	1.3. Configuration options
	1.3.1. Automated parallelization

	1.3.2. Configuring the laziness

	1.4. Helper functionalities

	1.5. Macro connectors for encapsulating processing networks in a class
	1.5.1. Decorating methods

	1.5.2. Configuring macro connectors

	1.6. Processing blocks for common tasks
	1.6.1. Routing data in a processing network

	1.6.2. Reducing the memory consumption

	1.7. Internal features
	1.7.1. Common helper classes

	1.7.2. Connector base classes

	1.7.3. Executors

	1.7.4. Proxy classes

	1.7.5. Virtual single-connectors

1.1. Decorators

The main feature of the Connectors package are the following decorators.

	
class connectors.Output(caching=True, parallelization=<Parallelization.THREAD: 2>, executor=<connectors._common._executors.ThreadingExecutor object>)

	A decorator, that marks a method as an output connector.
These connections can be used to automatically update a processing chain
when a value has changed.
The decorated method must not take any arguments.

	Parameters

	
	caching – True, if caching shall be enabled, False otherwise. See
the OutputConnector’s
set_caching()
method for details

	parallelization – a flag from the connectors.Parallelization enum.
See the OutputConnector’s
set_parallelization()
method for details

	executor – an Executor instance,
that can be created with the connectors.executor()
function. See the OutputConnector’s
set_executor()
method for details

	
class connectors.Input(observers=(), laziness=<Laziness.ON_REQUEST: 1>, parallelization=<Parallelization.SEQUENTIAL: 1>, executor=<connectors._common._executors.ThreadingExecutor object>)

	A decorator, that marks a method as an input for single connections.
These connections can be used to automatically update a processing chain
when a value has changed.
The decorated method must take exactly one argument.

	Parameters

	
	observers – the names of output methods that are affected by passing
a value to this connector. For convenience it is also
possible to pass a string here, if only one output
connector depends on this input.

	laziness – a flag from the connectors.Laziness enum. See the
SingleInputConnector’s
set_laziness()
method for details

	parallelization – a flag from the connectors.Parallelization enum.
See the MultiInputConnector’s
set_parallelization()
method for details

	executor – an Executor instance,
that can be created with the connectors.executor()
function. See the InputConnector’s
set_executor() method
for details

	
announce_condition(method)

	A decorator, that can be used as a method of the connector method, to
define a condition for the propagation of announcements through the
input connector.

The decorated method shall return True, if the announcement shall be
propagated and False` otherwise. For normal input connectors, it shall
not require any arguments, while for multi-input connectors, it must accept
the data ID of the connection, through which the announcement was received.

Before the values in a processing chain are updated, the value changes
are announced to the downstream processors. Only if data is retrieved
through an output connector, that has pending announcements, the actual
value changes are requested from the upstream processors (lazy execution).
If an input connector has defined a condition on the propagation of
announcements and this condition evaluates to False, the announcements
are not forwarded to the downstream processors. This also prevents those
processors from requesting updated values from upstream.

The usage is described by the following example: if A is the name of
the method, that is decorated with connectors.Input
or connectors.MultiInput, the method for the condition has to be
decorated with @A.announce_condition.

	Param

	the method, that defines the condition

	Returns

	the same method

	
notify_condition(method)

	A decorator, that can be used as a method of the connector method, to
define a condition for notifying the observing output connectors about
a value, that has been changed by this connector.

The decorated method shall return True, if the notification shall be
sent and False otherwise. For normal input connectors, it shall accept
the new value as an argument, while for multi-input connectors, it must
accept the data ID of the connection, through which the announcement was
received and the new value.

This condition is checked after the input connector (the setter method)
has been executed. If an input connector has defined a condition on the
notification of its observing output connectors and this condition evaluates
to False, the output connectors are sent a cancel notification, that
informs them, that the state of the object, to which the connectors belong,
has not changed in a relevant way. This prevents the update of values
further down the processing chain.

The usage is described by the following example: if A is the name of
the method, that is decorated with connectors.Input
or connectors.MultiInput, the method for the condition has to be
decorated with @A.notify_condition.

	Param

	the method, that defines the condition

	Returns

	the same method

	
class connectors.MultiInput(observers=(), laziness=<Laziness.ON_REQUEST: 1>, parallelization=<Parallelization.SEQUENTIAL: 1>, executor=<connectors._common._executors.ThreadingExecutor object>)

	A decorator, that marks a method as an input for multiple connections.
These connections can be used to automatically update a processing chain
when a value has changed.

The decorated method must take exactly one argument and return a unique id.
For every MultiInput-method a remove method has to be provided, which removes
a value, that has previously been added.

A replace method can be provided optionally. This method is called, when the
value of a connected output has changed, rather than removing the old value and
adding the new.

See the remove() and replace()
methods for documentation about how to define these methods for a multi-input connector.

	Parameters

	
	observers – the names of output methods that are affected by passing
a value to this connector. For convenience it is also
possible to pass a string here, if only one output
connector depends on this input.

	laziness – a flag from the connectors.Laziness enum. See the
MultiInputConnector’s
set_laziness()
method for details

	parallelization – a flag from the connectors.Parallelization enum.
See the MultiInputConnector’s
set_parallelization()
method for details

	executor – an Executor instance,
that can be created with the connectors.executor()
function. See the MultiInputConnector’s
set_executor()
method for details

	
announce_condition(method)

	A decorator, that can be used as a method of the connector method, to
define a condition for the propagation of announcements through the
input connector.

The decorated method shall return True, if the announcement shall be
propagated and False` otherwise. For normal input connectors, it shall
not require any arguments, while for multi-input connectors, it must accept
the data ID of the connection, through which the announcement was received.

Before the values in a processing chain are updated, the value changes
are announced to the downstream processors. Only if data is retrieved
through an output connector, that has pending announcements, the actual
value changes are requested from the upstream processors (lazy execution).
If an input connector has defined a condition on the propagation of
announcements and this condition evaluates to False, the announcements
are not forwarded to the downstream processors. This also prevents those
processors from requesting updated values from upstream.

The usage is described by the following example: if A is the name of
the method, that is decorated with connectors.Input
or connectors.MultiInput, the method for the condition has to be
decorated with @A.announce_condition.

	Param

	the method, that defines the condition

	Returns

	the same method

	
notify_condition(method)

	A decorator, that can be used as a method of the connector method, to
define a condition for notifying the observing output connectors about
a value, that has been changed by this connector.

The decorated method shall return True, if the notification shall be
sent and False otherwise. For normal input connectors, it shall accept
the new value as an argument, while for multi-input connectors, it must
accept the data ID of the connection, through which the announcement was
received and the new value.

This condition is checked after the input connector (the setter method)
has been executed. If an input connector has defined a condition on the
notification of its observing output connectors and this condition evaluates
to False, the output connectors are sent a cancel notification, that
informs them, that the state of the object, to which the connectors belong,
has not changed in a relevant way. This prevents the update of values
further down the processing chain.

The usage is described by the following example: if A is the name of
the method, that is decorated with connectors.Input
or connectors.MultiInput, the method for the condition has to be
decorated with @A.notify_condition.

	Param

	the method, that defines the condition

	Returns

	the same method

	
remove(method)

	A method of the decorated method to decorate the remove method, with
which data, that has been added through the decorated method can be removed.

A remove method has to take the ID, which has been returned by the multi-input
method as a parameter, so it knows which value has to be removed.

The usage is described by the following example: if A is the name of
the method, that is decorated with MultiInput, the remove method
has to be decorated with @A.remove.

	Parameters

	method – the decorated remove method

	Returns

	a MultiInputAssociateDescriptor, that generates a MultiInputAssociateProxy,
which enhances the decorated method with the functionality, that
is required for the multi-input connector

	
replace(method)

	A method of the decorated method to decorate the replace method, with
which data, that has been added through the decorated method, can be replaced
with new data without changing the ID under which it is stored.

A replace method has to take the ID, under which the old data is stored,
as first parameter and the new data as second parameter. It is strongly
recommended, that this method stores the new data under the same ID as
the old data. And this method must return the ID, under which the new
data is stored.

Also, if no data has been stored under the given ID, yet, the replace method
shall simply store the data under the given ID instead of raising an error.

Specifying a replace method is optional. If no method has been decorated
to be a replace method, the MultiInput connector falls back to removing
the old data and adding the updated one, whenever updated data is propagated
through its connections.

The usage is described by the following example: if A is the name of
the method, that is decorated with MultiInput, the remove method
has to be decorated with @A.replace.

	Parameters

	method – the decorated replace method

	Returns

	a MultiInputAssociateDescriptor, that generates a MultiInputAssociateProxy,
which enhances the decorated method with the functionality, that
is required for the multi-input connector

1.2. Connectors

This section documents the capabilities of the connector objects, with which the decorated methods are replaced.
Instances of the following classes replace the decorated methods, so they are enhanced with the functionality of a connector.
These classes are not instantiated by code outside the Connectors package.

1.2.1. Connectors for setter methods

	
class connectors.connectors.SingleInputConnector(instance, method, observers, laziness, parallelization, executor)

	A connector-class that replaces setter methods, so they can be used to connect
different objects in a processing chain.

	Parameters

	
	instance – the instance of which the method is replaced by this connector

	method – the unbound method, that is replaced by this connector

	observers – the names of output methods that are affected by passing a value to this connector

	laziness – a flag from the connectors.Laziness enum. See
the set_laziness()
method for details

	parallelization – a flag from the connectors.Parallelization enum.
See the set_parallelization()
method for details

	executor – an Executor instance,
that can be created with the connectors.executor()
function. See the set_executor()
method for details

	
connect(connector)

	Connects this InputConnector to an output.

	Parameters

	connector – the Connector instance
to which this connector shall be connected

	Returns

	the instance of which this InputConnector
has replaced a method

	
disconnect(connector)

	Disconnects this InputConnector
from an output, to which is has been connected.

	Parameters

	connector – a Connector instance
from which this connector shall be disconnected

	Returns

	the instance of which this Connector
has replaced a method

	
set_executor(executor)

	Sets the executor, which handles the computations, when the data is
retrieved through this connector.
An executor can be created with the connectors.executor() function. It
manages the order and the parallelization of the computations, when updating
the data in a processing chain.
If multiple connectors in a processing chain need to be computed, the
executor of the connector, which started the computations, is used for
all computations.

	Parameters

	executor – an Executor instance,
that can be created with the connectors.executor()
function

	
set_laziness(laziness)

	Configures the lazy execution of the connector.
Normally the connectors are executed lazily, which means, that any computation
is only started, when the result of a processing chain is requested. For
certain use cases it is necessary to disable this lazy execution, though,
so that the values are updated immediately as soon as new data is available.
There are different behaviors for the (non) lazy execution, which are
described in the connectors.Laziness enum.

	Parameters

	laziness – a flag from the connectors.Laziness enum

	
set_parallelization(parallelization)

	Specifies, if and how the execution of this connector can be parallelized.
The choices are no parallelization, the execution in a separate thread
and the execution in a separate process.
This method specifies a hint, which level of parallelization is possible
with the connector. If the executor of the connector, through which the
computation is started, does not support the specified level, the next simpler
one will be chosen. E.g. if a connector can be parallelized in a separate
process, but the executor only allows threads or sequential execution, the
connector will be executed in a separate thread.

	Parameters

	parallelization – a flag from the connectors.Parallelization enum

	
class connectors.connectors.MultiInputConnector(instance, method, remove_method, replace_method, observers, laziness, parallelization, executor)

	A connector-class that replaces special setter methods, that allow to pass
multiple values, so they can be used to connect different objects in a processing
chain.

	Parameters

	
	instance – the instance of which the method is replaced by this connector

	method – the unbound method, that is replaced by this connector

	remove_method – an unbound method, that is used to remove data, that
has been added through this connector

	replace_method – an unbound method, that is used to replace data,
that has been added through this connector

	observers – the names of output methods that are affected by passing a value to this connector

	laziness – a flag from the connectors.Laziness enum. See
the set_laziness()
method for details

	parallelization – a flag from the connectors.Parallelization enum.
See the set_parallelization()
method for details

	executor – an Executor instance,
that can be created with the connectors.executor()
function. See the set_executor()
method for details

	
__getitem__(key)

	Allows to use a multi-input connector as multiple single-input connectors.

The key, under which a virtual single-input connector is accessed, shall
also be returned the data ID, under which the result of the connected
output is stored.

	Parameters

	key – a key for accessing a particular virtual single-input connector

	Returns

	a MultiInputItem, which enhances
the decorated method with the functionality of the virtual
single-input connector

	
connect(connector)

	Connects this InputConnector to an output.

	Parameters

	connector – the Connector instance
to which this connector shall be connected

	Returns

	the instance of which this InputConnector
has replaced a method

	
disconnect(connector)

	Disconnects this InputConnector
from an output, to which is has been connected.

	Parameters

	connector – a Connector instance
from which this connector shall be disconnected

	Returns

	the instance of which this Connector
has replaced a method

	
set_executor(executor)

	Sets the executor, which handles the computations, when the data is
retrieved through this connector.
An executor can be created with the connectors.executor() function. It
manages the order and the parallelization of the computations, when updating
the data in a processing chain.
If multiple connectors in a processing chain need to be computed, the
executor of the connector, which started the computations, is used for
all computations.

	Parameters

	executor – an Executor instance,
that can be created with the connectors.executor()
function

	
set_laziness(laziness)

	Configures the lazy execution of the connector.
Normally the connectors are executed lazily, which means, that any computation
is only started, when the result of a processing chain is requested. For
certain use cases it is necessary to disable this lazy execution, though,
so that the values are updated immediately as soon as new data is available.
There are different behaviors for the (non) lazy execution, which are
described in the connectors.Laziness enum.

	Parameters

	laziness – a flag from the connectors.Laziness enum

	
set_parallelization(parallelization)

	Specifies, if and how the execution of this connector can be parallelized.
The choices are no parallelization, the execution in a separate thread
and the execution in a separate process.
This method specifies a hint, which level of parallelization is possible
with the connector. If the executor of the connector, through which the
computation is started, does not support the specified level, the next simpler
one will be chosen. E.g. if a connector can be parallelized in a separate
process, but the executor only allows threads or sequential execution, the
connector will be executed in a separate thread.

	Parameters

	parallelization – a flag from the connectors.Parallelization enum

1.2.2. Connectors for getter methods

	
class connectors.connectors.OutputConnector(instance, method, caching, parallelization, executor)

	A connector-class that replaces getter methods, so they can be used to
connect different objects.

	Parameters

	
	instance – the instance of which the method is replaced by this connector

	method – the unbound method that is replaced by this connector

	caching – True, if caching shall be enabled, False otherwise. See
the set_caching()
method for details

	parallelization – a flag from the connectors.Parallelization enum.
See the set_parallelization()
method for details

	executor – an Executor instance,
that can be created with the connectors.executor()
function. See the set_executor()
method for details

	
connect(connector)

	A method for connecting this output connector to an input connector.

	Parameters

	connector – the input connector to which this connector shall be connected

	Returns

	the instance of which this OutputConnector has replaced a method

	
disconnect(connector)

	A method for disconnecting this output connector from an input connector,
to which it is currently connected.

	Parameters

	connector – the input connector from which this connector shall be disconnected

	Returns

	the instance of which this OutputConnector has replaced a method

	
set_caching(caching)

	Specifies, if the result value of this output connector shall be cached.
If caching is enabled and the result value is retrieved (e.g. through a
connection or by calling the connector), the cached value is returned and
the replaced getter method is not called unless the result value has to
be re-computed, because an observed setter method has changed a parameter
for the computation. In this case, the getter method is only called once,
independent of the number of connections through which the result value
has to be passed.

	Parameters

	caching – True, if caching shall be enabled, False otherwise

	
set_executor(executor)

	Sets the executor, which handles the computations, when the data is
retrieved through this connector.
An executor can be created with the connectors.executor() function. It
manages the order and the parallelization of the computations, when updating
the data in a processing chain.
If multiple connectors in a processing chain need to be computed, the
executor of the connector, which started the computations, is used for
all computations.

	Parameters

	executor – an Executor instance,
that can be created with the connectors.executor()
function

	
set_parallelization(parallelization)

	Specifies, if and how the execution of this connector can be parallelized.
The choices are no parallelization, the execution in a separate thread
and the execution in a separate process.
This method specifies a hint, which level of parallelization is possible
with the connector. If the executor of the connector, through which the
computation is started, does not support the specified level, the next simpler
one will be chosen. E.g. if a connector can be parallelized in a separate
process, but the executor only allows threads or sequential execution, the
connector will be executed in a separate thread.

	Parameters

	parallelization – a flag from the connectors.Parallelization enum

	
class connectors.connectors.MultiOutputConnector(instance, method, caching, parallelization, executor, keys)

	A connector-class that replaces getter methods, which accept one parameter,
so they can be used as a multi-output connector, which can be connected to
different objects.

Multi-output connectors can either be used to route a dynamic number of values
to a multi-input connector. Or the argument for the []-operator can be used
to parameterize the getter method.

	Parameters

	
	instance – the instance of which the method is replaced by this connector

	method – the unbound method that is replaced by this connector

	caching – True, if caching shall be enabled, False otherwise. See
the set_caching()
method for details

	parallelization – a flag from the connectors.Parallelization enum.
See the set_parallelization()
method for details

	executor – an Executor instance,
that can be created with the connectors.executor()
function. See the set_executor()
method for details

	keys – an unbound method, that returns the keys for which this multi-output
connector shall compute values, when it is connected to a
multi-input connector

	
__getitem__(key)

	Allows to use a multi-output connector as multiple single-output connectors.

	Parameters

	key – a key for accessing a particular virtual single-output connector

	Returns

	a connectors._common._multioutput_item.MultiOutputItem,
which enhances the decorated method with the functionality of
the virtual single-output connector

	
connect(connector)

	A method for connecting this output connector to an input connector.
This is only allowed with multi-input connectors. In order to establish
a connection to a single-input connector, use the [] operator to specify,
which value shall be passed through the connection.

	Parameters

	connector – the input connector to which this connector shall be connected

	Returns

	the instance of which this OutputConnector has replaced a method

	
disconnect(connector)

	A method for disconnecting this output connector from an input connector,
to which it is currently connected.

	Parameters

	connector – the input connector from which this connector shall be disconnected

	Returns

	the instance of which this OutputConnector has replaced a method

	
set_caching(caching)

	Specifies, if the result value of this output connector shall be cached.
If caching is enabled and the result value is retrieved (e.g. through a
connection or by calling the connector), the cached value is returned and
the replaced getter method is not called unless the result value has to
be re-computed, because an observed setter method has changed a parameter
for the computation. In this case, the getter method is only called once,
independent of the number of connections through which the result value
has to be passed.

	Parameters

	caching – True, if caching shall be enabled, False otherwise

	
set_executor(executor)

	Sets the executor, which handles the computations, when the data is
retrieved through this connector.
An executor can be created with the connectors.executor() function. It
manages the order and the parallelization of the computations, when updating
the data in a processing chain.
If multiple connectors in a processing chain need to be computed, the
executor of the connector, which started the computations, is used for
all computations.

	Parameters

	executor – an Executor instance,
that can be created with the connectors.executor()
function

	
set_parallelization(parallelization)

	Specifies, if and how the execution of this connector can be parallelized.
The choices are no parallelization, the execution in a separate thread
and the execution in a separate process.
This method specifies a hint, which level of parallelization is possible
with the connector. If the executor of the connector, through which the
computation is started, does not support the specified level, the next simpler
one will be chosen. E.g. if a connector can be parallelized in a separate
process, but the executor only allows threads or sequential execution, the
connector will be executed in a separate thread.

	Parameters

	parallelization – a flag from the connectors.Parallelization enum

1.3. Configuration options

This section describes

1.3.1. Automated parallelization

The following functionalities are for configuring the automated parallelization of the connector’s computations.

	
class connectors.Parallelization

	An enumeration type for the parallelization parameter of an executor’s
run_method() method:

	
	SEQUENTIAL

	the method can only be executed sequentially.

	
	THREAD

	the method should be executed in a separate thread, sequential execution
is possible as a fallback.

	
	PROCESS

	the method should be executed in a separate process, threaded execution
or sequential execution can be used as a fallback.

	
connectors.executor(threads=None, processes=0)

	A factory function for creating Executor
objects. Executors define how the computations of a processing chain are
parallelized by executing them in separate threads or processes. This function
creates an executor and configures it to use at maximum the given number of
threads or processes.

	Parameters

	
	threads – an integer number of threads or None to determine the number
automatically. 0 disables the thread based parallelization.

	processes – an integer number of processes or None to determine the
number automatically (in this case, the number of CPU cores
will be taken). 0 disables the process based parallelization.

1.3.2. Configuring the laziness

Flags of the following enumeration can be passed to an input connectors set_laziness() method.

	
class connectors.Laziness

	An enumeration type for defining the laziness of input connectors. The
enumeration values are sorted by how lazy the behavior is, which they represent,
so smaller/greater comparisons are possible. Do not rely on the exact integer
value though, since they are not guaranteed to have the same value in any version
of this package.

	
	ON_REQUEST

	the setter is called, when its execution is requested by a method further
down the processing chain.

	
	ON_NOTIFY

	the setter is called, when the connected getter has computed the input
value, even if the execution of this setter has not been requested.

	
	ON_ANNOUNCE

	the setter is requests its input value immediately and is executed as soon
as that is available. But connecting the setter, does not cause a request
of the input value.

	
	ON_CONNECT

	same as ON_ANNOUNCE, but the value is also requested, when a new connection
is established, which influences the input value of this connector. This
connection is does not necessarily have to be with this connector, but it
can also be further upstream in the processing chain.

1.4. Helper functionalities

This is the API reference for helper functionalities, that facilitate the use of the Connectors package.

	
class connectors.MultiInputData(datas=())

	A container for data that is managed with a multi-input connector.
This is basically an OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict] with an add method,
that stores the added data under a unique key.
This facilitates the implementation of a class with a MultiInput connector:

>>> import connectors
>>> class ReplacingMultiInput:
... def __init__(self):
... self.__data = connectors.MultiInputData()
...
... @connectors.MultiInput()
... def add_value(self, value):
... return self.__data.add(value)
...
... @add_value.remove
... def remove_value(self, data_id):
... del self.__data[data_id]
...
... @add_value.replace
... def replace_value(self, data_id, value):
... self.__data[data_id] = value
... return data_id

	Parameters

	datas – an optional sequence of data objects, that shall be added to the container

	
add(data)

	Adds a data set to the container.

	Parameters

	data – the data set that shall be added

	Returns

	the id under which the data is stored

1.5. Macro connectors for encapsulating processing networks in a class

Classes, which encapsulate networks of objects, that are connected with the functionalities of the Connectors package, are called macros or macro classes in the scope of this package.
The connectors, that are used to export connectors from the internal network as connectors of the macro, are called macro connectors.
This is the API reference for the functionalities, that are related to macro connectors.

1.5.1. Decorating methods

The following classes can be used to decorate methods, so they become macro connectors.

	
class connectors.MacroOutput

	A decorator to replace a method with a macro output connector.

Macro connectors are useful, when a processing network shall be encapsulated
in a class. In such a case, macro output connectors are used to export output
connectors from the internal processing network to be accessible as connectors
of the encapsulating class’s instance.

The decorated method must not take any parameters and return the output connector
from the internal processing network, that it exports.

The resulting connector will behave like an output connector, which is very
different from the decorated method:

	the connector takes no argument.

	when called, the connector returns the result of the exported connector.

	
class connectors.MacroInput

	A decorator to replace a method with a macro input connector.

Macro connectors are useful, when a processing network shall be encapsulated
in a class. In such a case, macro input connectors are used to export input
connectors from the internal processing network to be accessible as connectors
of the encapsulating class’s instance.

The decorated method must not take any parameters and yield all input connectors
from the internal processing network, that it exports. Exporting multiple
connectors through the same macro connector is possible and useful, when all
of these connectors shall always receive the same input value.

The resulting connector will behave like an input connector, which is very
different from the decorated method:

	the connector’s arguments are passed to all the exported input connectors,
when it is called.

	when called, the connector returns the instance to which it belongs, so
that changing a parameter and retrieving a result in one line is possible

	when a behavior (e.g. laziness) of the connector is changed, the change
is passed on to all the exported connectors.

1.5.2. Configuring macro connectors

Instances of the following classes replace the decorated methods, so they are enhanced with the functionality of a macro connector.

	
class connectors.connectors.MacroOutputConnector(instance, method)

	A Connector-class that exports an output connector from an internal processing
network to the API of the class, that encapsulates the network.

	Parameters

	
	instance – the instance in which the method is replaced by this connector

	method – the unbound method, that is replaced by this connector

	
connect(connector)

	Connects the exported output connector to the given input.

	Parameters

	connector – the input connector to which the exported connector shall be connected

	Returns

	the instance of which this connector has replaced a method

	
disconnect(connector)

	Disconnects the exported output connector from the given input.

	Parameters

	connector – the input connector from which the exported connector shall be disconnected

	Returns

	the instance of which this connector has replaced a method

	
set_caching(caching)

	Specifies, if the result value of this output connector shall be cached.
If caching is enabled and the result value is retrieved (e.g. through a
connection or by calling the connector), the cached value is returned and
the replaced getter method is not called unless the result value has to
be re-computed, because an observed setter method has changed a parameter
for the computation. In this case, the getter method is only called once,
independent of the number of connections through which the result value
has to be passed.

	Parameters

	caching – True, if caching shall be enabled, False otherwise

	
set_executor(executor)

	Sets the executor, which handles the computations, when the data is
retrieved through this connector.
An executor can be created with the connectors.executor() function. It
manages the order and the parallelization of the computations, when updating
the data in a processing chain.
If multiple connectors in a processing chain need to be computed, the
executor of the connector, which started the computations, is used for
all computations.

	Parameters

	executor – an Executor instance,
that can be created with the connectors.executor()
function

	
set_parallelization(parallelization)

	Specifies, if and how the execution of this connector can be parallelized.
The choices are no parallelization, the execution in a separate thread
and the execution in a separate process.
This method specifies a hint, which level of parallelization is possible
with the connector. If the executor of the connector, through which the
computation is started, does not support the specified level, the next simpler
one will be chosen. E.g. if a connector can be parallelized in a separate
process, but the executor only allows threads or sequential execution, the
connector will be executed in a separate thread.

	Parameters

	parallelization – a flag from the connectors.Parallelization enum

	
class connectors.connectors.MacroInputConnector(instance, method)

	A Connector-class that exports input connectors from an internal processing
network to the API of the class, that encapsulates the network.

	Parameters

	
	instance – the instance in which the method is replaced by this connector

	method – the unbound method, that is replaced by this connector

	
connect(connector)

	Connects all exported input connectors to the given output.

	Parameters

	connector – the output connector to which the exported connectors shall be connected

	Returns

	the instance of which this connector has replaced a method

	
disconnect(connector)

	Disconnects all exported input connectors from the given output.

	Parameters

	connector – the output connector from which the exported connectors shall be disconnected

	Returns

	the instance of which this connector has replaced a method

	
set_executor(executor)

	Sets the executor, which handles the computations, when the data is
retrieved through this connector.
An executor can be created with the connectors.executor() function. It
manages the order and the parallelization of the computations, when updating
the data in a processing chain.
If multiple connectors in a processing chain need to be computed, the
executor of the connector, which started the computations, is used for
all computations.

	Parameters

	executor – an Executor instance,
that can be created with the connectors.executor()
function

	
set_laziness(laziness)

	Configures the lazy execution of the connector.
Normally the connectors are executed lazily, which means, that any computation
is only started, when the result of a processing chain is requested. For
certain use cases it is necessary to disable this lazy execution, though,
so that the values are updated immediately as soon as new data is available.
There are different behaviors for the (non) lazy execution, which are
described in the connectors.Laziness enum.

	Parameters

	laziness – a flag from the connectors.Laziness enum

	
set_parallelization(parallelization)

	Specifies, if and how the execution of this connector can be parallelized.
The choices are no parallelization, the execution in a separate thread
and the execution in a separate process.
This method specifies a hint, which level of parallelization is possible
with the connector. If the executor of the connector, through which the
computation is started, does not support the specified level, the next simpler
one will be chosen. E.g. if a connector can be parallelized in a separate
process, but the executor only allows threads or sequential execution, the
connector will be executed in a separate thread.

	Parameters

	parallelization – a flag from the connectors.Parallelization enum

1.6. Processing blocks for common tasks

This is the API reference for processing blocks, that help with common tasks, when
constructing a processing network.

1.6.1. Routing data in a processing network

	
class connectors.blocks.PassThrough(data=None)

	A trivial processing block, that simply passes its input value to its output.
Instances of this can be useful to distribute a single parameter to multiple
inputs, if this parameter is used in several places in a processing chain.

	Parameters

	data – the input object

	
output()

	Returns the object, that has been passed with the input() method.

	Returns

	the given object

	
input(data)

	Specifies the input object.

	Parameters

	data – the input object

	Returns

	the PassThrough instance

	
class connectors.blocks.Multiplexer(selector=None)

	A class, that routes one of arbitrarily many inputs to its output.

Usage Example: (the assignments _ = ... are only to make doctest [https://docs.python.org/3/library/doctest.html#module-doctest]
ignore the return values of the operations.)

>>> import connectors
>>> # Create some test objects
>>> test1 = connectors.blocks.PassThrough(data="One")
>>> test2 = connectors.blocks.PassThrough(data="Two")
>>> multiplexer = connectors.blocks.Multiplexer()
>>> # Connect the test objects to the multiplexer
>>> # Note, how the input of the input connector of the multiplexer is accessed like a dictionary
>>> _ = multiplexer.input["1"].connect(test1.output)
>>> _ = test2.output.connect(multiplexer.input[2]) # the order, which is connected to which is not important
>>> # Select the output with the same selector, that has been passed as key, during connecting
>>> _ = multiplexer.select("1")
>>> multiplexer.output()
'One'
>>> _ = multiplexer.select(2)
>>> multiplexer.output()
'Two'

	Parameters

	selector – the selector of the input, that shall be routed to the output

	
output()

	Returns the value from the selected input.
If no data is found for the given selector, the first input data set, that
was added, is returned.

	Returns

	the selected input object

	
input(data)

	Specifies an input object, that can be selected to be routed to the output.
When connecting to this method, the selector, by which the given connection
can be selected, can be specified with the __getitem__()
overload:

multiplexer.input[selector].connect(generator.output())

	Parameters

	data – the input object

	Returns

	an ID, that can be used as a selector value t

	
remove(data_id)

	Is used to remove an input object from the collection, when the respective
connector is disconnected from the input.

	Parameters

	data_id – the data_id under which the input object is stored

	Returns

	the Multiplexer instance

	
replace(data_id, data)

	Is used to replace an input object, when the respective connected
connector has produced a new one.

	Parameters

	
	data_id – the data_id under which the input object is stored

	data – the new input object

	Returns

	data_id, because the ID does not change for the replaced data

1.6.2. Reducing the memory consumption

	
class connectors.blocks.WeakrefProxyGenerator(data=None)

	A helper class to reduce memory usage in certain processing chains by
discarding intermediate results. It takes an object as input and outputs a
weak reference proxy to it.
The deletion of the strong reference to the input object can triggered by connecting
the output connector for the final result to this class’s delete_reference()
method. This will cause the input object to be garbage collected, if no further
references to it exist.
This class should be used in combination with the caching of the final result,
since this prevents, that the deleted input data is required to re-compute the
result, when it’s retrieved repeatedly.

	Parameters

	data – the input object

	
output()

	Creates and returns a weak reference proxy to the input object.
As long as the object has not been garbage collected, this proxy should
behave exactly as the input object.

	Returns

	a weak reference proxy to the input object, if it can be weakly
referenced, otherwise the object itself

	
input(data)

	Specifies the input object.

	Parameters

	data – the input object

	Returns

	the WeakrefProxyGenerator instance

	
delete_reference(*args, **kwargs)

	Causes the strong reference to the input object to be deleted, so that
the input object can be garbage collected.
This connector should be connected to the output of the final result, so
it is notified, when the result has been computed and the input object is
no longer required.

	Parameters

	*args,**kwargs – these parameters just there fore compatibility with
other input connectors and are not used in this method

	Returns

	the WeakrefProxyGenerator instance

1.7. Internal features

This section contains the API reference for the internal features of the Connectors package.
It contains implementation details, that are shown here for completeness and reference.

	1.7.1. Common helper classes
	1.7.1.1. Container classes

	1.7.1.2. Supplementary classes

	1.7.2. Connector base classes

	1.7.3. Executors
	1.7.3.1. Base class

	1.7.3.2. Executor classes

	1.7.4. Proxy classes
	1.7.4.1. Base class

	1.7.4.2. Proxy classes

	1.7.5. Virtual single-connectors

1.7.1. Common helper classes

This section contains helper classes, that are used internally in the Connectors package.

1.7.1.1. Container classes

	
class connectors._common._non_lazy_inputs.NonLazyInputs(situation)

	A subclass of set [https://docs.python.org/3/library/stdtypes.html#set], that is used internally to track the non-lazy
input connectors, that request an immediate re-computation of the processing
chain.

	Parameters

	situation – a flag from the Laziness enumeration
to which the laziness of the connectors is compared in
order to decide, if it shall be added to this set [https://docs.python.org/3/library/stdtypes.html#set].

	
add(connector, laziness)

	Adds a connector to this container, if its laziness is low enough to
cause immediate execution.

	Parameters

	
	connector – the InputConnector
instance, that shall be added

	laziness – the laziness setting of that connector as a flag from the
Laziness enumeration

	
execute(executor)

	Executes the necessary computations, that are requested by the non-lazy
input connectors.

	Parameters

	executor – the connectors._common._executors.Executor instance,
that manages the executions

1.7.1.2. Supplementary classes

	
class connectors._common._multiinput_associate.MultiInputAssociateDescriptor(method, observers, executor)

	A descriptor class for associating remove and replace methods with their
multi-input.
Instances of this class are created by the decorator methods remove()
and replace().

	Parameters

	
	method – the unbound method, that is wrapped

	observers – the names of output methods that are affected by passing
a value to the multi-input connector.

	executor – an Executor instance,
that can be created with the connectors.executor()
function. See the MultiInputConnector’s
set_executor()
method for details

	
class connectors._common._multiinput_associate.MultiInputAssociateProxy(instance, method, observers, executor)

	A proxy class for remove or replace methods of multi-input connectors.
Connector proxies are returned by the connector decorators, while the methods
are replaced by the actual connectors. Think of a connector proxy like of a
bound method, which is also created freshly, whenever a method is accessed.
The actual connector only has a weak reference to its instance, while this
proxy has a hard reference, but mimics the connector in almost every other
way. This makes constructions like value = Class().connector() possible.
Without the proxy, the instance of the class would be deleted before the connector
method is called, so that the weak reference of the connector would be expired
during its call.

	Parameters

	
	instance – the instance in which the method is replaced by the multi-input connector proxy

	method – the unbound method, that is replaced by this proxy (the remove or replace method)

	observers – the names of output methods that are affected by passing
a value to the multi-input connector proxy

	executor – an Executor instance,
that can be created with the connectors.executor()
function. See the set_executor()
method for details

1.7.2. Connector base classes

This section contains documentation of the base classes of the connector classes.

	
class connectors.connectors.Connector(instance, method, parallelization, executor)

	Base class for connectors.
Connectors are objects that replace methods of a class so that they can be
connected to each other. This way changing data at one end of a connection
chain will automatically cause the data at the other end of the chain to be
updated, when that data is retrieved the next time.

	Parameters

	
	instance – the instance of which the method is replaced by this connector

	method – the unbound method that is replaced by this connector

	parallelization – a flag from the connectors.Parallelization enum.
See the set_parallelization() method for details

	executor – an Executor instance,
that can be created with the connectors.executor()
function. See the set_executor()
method for details

	
connect(connector)

	Abstract method that defines the interface of a Connector
for connecting it with other connectors.

	Parameters

	connector – the Connector instance
to which this connector shall be connected

	Returns

	the instance of which this Connector
has replaced a method

	
disconnect(connector)

	Abstract method that defines the interface of a Connector
for disconnecting it from a connector, to which it is currently connected.

	Parameters

	connector – a Connector instance
from which this connector shall be disconnected

	Returns

	the instance of which this Connector
has replaced a method

	
set_executor(executor)

	Sets the executor, which handles the computations, when the data is
retrieved through this connector.
An executor can be created with the connectors.executor() function. It
manages the order and the parallelization of the computations, when updating
the data in a processing chain.
If multiple connectors in a processing chain need to be computed, the
executor of the connector, which started the computations, is used for
all computations.

	Parameters

	executor – an Executor instance,
that can be created with the connectors.executor()
function

	
set_parallelization(parallelization)

	Specifies, if and how the execution of this connector can be parallelized.
The choices are no parallelization, the execution in a separate thread
and the execution in a separate process.
This method specifies a hint, which level of parallelization is possible
with the connector. If the executor of the connector, through which the
computation is started, does not support the specified level, the next simpler
one will be chosen. E.g. if a connector can be parallelized in a separate
process, but the executor only allows threads or sequential execution, the
connector will be executed in a separate thread.

	Parameters

	parallelization – a flag from the connectors.Parallelization enum

	
class connectors._connectors._baseclasses.InputConnector(instance, method, laziness, parallelization, executor)

	Base class for input connectors, that replace setter methods.

	Parameters

	
	instance – the instance of which the method is replaced by this connector

	method – the unbound method that is replaced by this connector

	laziness – a flag from the connectors.Laziness enum. See
the set_laziness() method for details

	parallelization – a flag from the Parallelization enum.
See the set_parallelization()
method for details

	executor – an Executor
instance, that can be created with the connectors.executor()
function. See the set_executor()
method for details

	
connect(connector)

	Connects this InputConnector to an output.

	Parameters

	connector – the Connector instance
to which this connector shall be connected

	Returns

	the instance of which this InputConnector
has replaced a method

	
disconnect(connector)

	Disconnects this InputConnector
from an output, to which is has been connected.

	Parameters

	connector – a Connector instance
from which this connector shall be disconnected

	Returns

	the instance of which this Connector
has replaced a method

	
set_executor(executor)

	Sets the executor, which handles the computations, when the data is
retrieved through this connector.
An executor can be created with the connectors.executor() function. It
manages the order and the parallelization of the computations, when updating
the data in a processing chain.
If multiple connectors in a processing chain need to be computed, the
executor of the connector, which started the computations, is used for
all computations.

	Parameters

	executor – an Executor instance,
that can be created with the connectors.executor()
function

	
set_laziness(laziness)

	Configures the lazy execution of the connector.
Normally the connectors are executed lazily, which means, that any computation
is only started, when the result of a processing chain is requested. For
certain use cases it is necessary to disable this lazy execution, though,
so that the values are updated immediately as soon as new data is available.
There are different behaviors for the (non) lazy execution, which are
described in the connectors.Laziness enum.

	Parameters

	laziness – a flag from the connectors.Laziness enum

	
set_parallelization(parallelization)

	Specifies, if and how the execution of this connector can be parallelized.
The choices are no parallelization, the execution in a separate thread
and the execution in a separate process.
This method specifies a hint, which level of parallelization is possible
with the connector. If the executor of the connector, through which the
computation is started, does not support the specified level, the next simpler
one will be chosen. E.g. if a connector can be parallelized in a separate
process, but the executor only allows threads or sequential execution, the
connector will be executed in a separate thread.

	Parameters

	parallelization – a flag from the connectors.Parallelization enum

1.7.3. Executors

Executors control, if a connector is executed sequentially, in a parallel thread or even a separate process.
Use the connectors.executor() function to instantiate an executor.

1.7.3.1. Base class

	
class connectors._common._executors.Executor

	a base class for managing the event loop and the execution in threads or processes.

	
get_event_loop()

	Returns the currently active event loop. This can be None, if no
coroutine, task or future is currently being processed.

	Returns

	the event loop or None

	
run_coroutine(coro)

	Takes a coroutine and runs it in a newly created event loop.

	Parameters

	coro – the coroutine

	Returns

	the return value of the coroutine

	
run_coroutines(coros)

	Takes multiple coroutines and runs them in a newly created event loop.

	Parameters

	coros – a sequence of coroutines

	
run_method(parallelization, method, instance, *args, **kwargs)

	Abstract method, whose overrides shall execute the given method.
The parallelization shall be implemented in this method.

	Parameters

	
	parallelization – a flag of connectors.Parallelization, that
specifies how the given method can be parallelized

	method – the unbound method, that shall be executed

	instance – the instance of which the method shall be executed

	*args,**kwargs – arguments for the method

	Returns

	the return value of the method

	
run_until_complete(future)

	Takes a future or a task and runs it in a newly created event loop.
This is a wrapper for the event loop’s run_until_complete() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.run_until_complete]
method.

	Parameters

	future – the future or the task

	Returns

	the return value of the execution

1.7.3.2. Executor classes

	
class connectors._common._executors.SequentialExecutor

	An executor class, that executes everything sequentially.

	
get_event_loop()

	Returns the currently active event loop. This can be None, if no
coroutine, task or future is currently being processed.

	Returns

	the event loop or None

	
run_coroutine(coro)

	Takes a coroutine and runs it in a newly created event loop.

	Parameters

	coro – the coroutine

	Returns

	the return value of the coroutine

	
run_coroutines(coros)

	Takes multiple coroutines and runs them in a newly created event loop.

	Parameters

	coros – a sequence of coroutines

	
run_method(parallelization, method, instance, *args, **kwargs)

	Executes the given method sequentially.

	Parameters

	
	parallelization – a flag of connectors.Parallelization, that
specifies how the given method can be parallelized

	method – the unbound method, that shall be executed

	instance – the instance of which the method shall be executed

	*args,**kwargs – arguments for the method

	Returns

	the return value of the method

	
run_until_complete(future)

	Takes a future or a task and runs it in a newly created event loop.
This is a wrapper for the event loop’s run_until_complete() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.run_until_complete]
method.

	Parameters

	future – the future or the task

	Returns

	the return value of the execution

	
class connectors._common._executors.ThreadingExecutor(number_of_threads)

	An executor class, that can parallelize computations with threads.

	Parameters

	number_of_threads – the maximum number of threads, that shall be
created, or None to determine this number
automatically.

	
get_event_loop()

	Returns the currently active event loop. This can be None, if no
coroutine, task or future is currently being processed.

	Returns

	the event loop or None

	
run_coroutine(coro)

	Takes a coroutine and runs it in a newly created event loop.

	Parameters

	coro – the coroutine

	Returns

	the return value of the coroutine

	
run_coroutines(coros)

	Takes multiple coroutines and runs them in a newly created event loop.

	Parameters

	coros – a sequence of coroutines

	
run_method(parallelization, method, instance, *args, **kwargs)

	Executes the given method in a thread if possible and falls back to
sequential execution if not.

	Parameters

	
	parallelization – a flag of connectors.Parallelization, that
specifies how the given method can be parallelized

	method – the unbound method, that shall be executed

	instance – the instance of which the method shall be executed

	*args,**kwargs – arguments for the method

	Returns

	the return value of the method

	
run_until_complete(future)

	Takes a future or a task and runs it in a newly created event loop.
This is a wrapper for the event loop’s run_until_complete() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.run_until_complete]
method.

	Parameters

	future – the future or the task

	Returns

	the return value of the execution

	
class connectors._common._executors.MultiprocessingExecutor(number_of_processes)

	An executor class, that can parallelize computations with processes.

	Parameters

	number_of_processes – the maximum number of processes, that shall be
created, or None to determine this number
automatically (in this case, the number of CPU
cores will be taken).

	
get_event_loop()

	Returns the currently active event loop. This can be None, if no
coroutine, task or future is currently being processed.

	Returns

	the event loop or None

	
run_coroutine(coro)

	Takes a coroutine and runs it in a newly created event loop.

	Parameters

	coro – the coroutine

	Returns

	the return value of the coroutine

	
run_coroutines(coros)

	Takes multiple coroutines and runs them in a newly created event loop.

	Parameters

	coros – a sequence of coroutines

	
run_method(parallelization, method, instance, *args, **kwargs)

	Executes the given method in a process if possible and falls back to
sequential execution if not.

	Parameters

	
	parallelization – a flag of connectors.Parallelization, that
specifies how the given method can be parallelized

	method – the unbound method, that shall be executed

	instance – the instance of which the method shall be executed

	*args,**kwargs – arguments for the method

	Returns

	the return value of the method

	
run_until_complete(future)

	Takes a future or a task and runs it in a newly created event loop.
This is a wrapper for the event loop’s run_until_complete() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.run_until_complete]
method.

	Parameters

	future – the future or the task

	Returns

	the return value of the execution

	
class connectors._common._executors.ThreadingMultiprocessingExecutor(number_of_threads, number_of_processes)

	An executor class, that can parallelize computations with both threads and processes.

	Parameters

	
	number_of_threads – the maximum number of threads, that shall be
created, or None to determine this number
automatically.

	number_of_processes – the maximum number of processes, that shall be
created, or None to determine this number
automatically (in this case, the number of CPU
cores will be taken).

	
get_event_loop()

	Returns the currently active event loop. This can be None, if no
coroutine, task or future is currently being processed.

	Returns

	the event loop or None

	
run_coroutine(coro)

	Takes a coroutine and runs it in a newly created event loop.

	Parameters

	coro – the coroutine

	Returns

	the return value of the coroutine

	
run_coroutines(coros)

	Takes multiple coroutines and runs them in a newly created event loop.

	Parameters

	coros – a sequence of coroutines

	
run_method(parallelization, method, instance, *args, **kwargs)

	Executes the given method in a process if possible and falls back to
threaded and then sequential execution if not.

	Parameters

	
	parallelization – a flag of connectors.Parallelization, that
specifies how the given method can be parallelized

	method – the unbound method, that shall be executed

	instance – the instance of which the method shall be executed

	*args,**kwargs – arguments for the method

	Returns

	the return value of the method

	
run_until_complete(future)

	Takes a future or a task and runs it in a newly created event loop.
This is a wrapper for the event loop’s run_until_complete() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.run_until_complete]
method.

	Parameters

	future – the future or the task

	Returns

	the return value of the execution

1.7.4. Proxy classes

This section contains the documentation of the connector proxy classes.
The proxies emulate the behavior of the connectors and are used to avoid circular references.
See the decorators on how to create connectors and the connectors themselves on how to use and configure them.

1.7.4.1. Base class

	
class connectors._proxies._baseclasses.ConnectorProxy(instance, method, parallelization, executor)

	A base class for proxy objects of connectors.
Connector proxies are returned by the connector decorators, while the methods
are replaced by the actual connectors. Think of a connector proxy like of a
bound method, which is also created freshly, whenever a method is accessed.
The actual connector only has a weak reference to its instance, while this
proxy has a hard reference, but mimics the connector in almost every other
way. This makes constructions like value = Class().connector() possible.
Without the proxy, the instance of the class would be deleted before the connector
method is called, so that the weak reference of the connector would be expired
during its call.

	Parameters

	
	instance – the instance in which the method is replaced by this connector proxy

	method – the unbound method that is replaced by this connector proxy

	parallelization – a flag from the connectors.Parallelization enum.
See the set_parallelization() method for details

	executor – an Executor instance,
that can be created with the connectors.executor()
function. See the set_executor()
method for details

	
connect(connector)

	Connects this connector with another one.

	Parameters

	connector – the Connector instance
to which this connector shall be connected

	Returns

	the instance of which this Connector
has replaced a method

	
set_executor(executor)

	Sets the executor, which handles the computations, when the data is
retrieved through this connector.
An executor can be created with the connectors.executor() function. It
manages the order and the parallelization of the computations, when updating
the data in a processing chain.
If multiple connectors in a processing chain need to be computed, the
executor of the connector, which started the computations, is used for
all computations.

	Parameters

	executor – an Executor instance,
that can be created with the connectors.executor()
function

	
set_parallelization(parallelization)

	Specifies, if and how the execution of this connector can be parallelized.
The choices are no parallelization, the execution in a separate thread
and the execution in a separate process.
This method specifies a hint, which level of parallelization is possible
with the connector. If the executor of the connector, through which the
computation is started, does not support the specified level, the next simpler
one will be chosen. E.g. if a connector can be parallelized in a separate
process, but the executor only allows threads or sequential execution, the
connector will be executed in a separate thread.

	Parameters

	parallelization – a flag from the connectors.Parallelization enum

1.7.4.2. Proxy classes

	
class connectors._proxies.OutputProxy(instance, method, caching, parallelization, executor)

	A proxy class for output connectors.
Connector proxies are returned by the connector decorators, while the methods
are replaced by the actual connectors. Think of a connector proxy like of a
bound method, which is also created freshly, whenever a method is accessed.
The actual connector only has a weak reference to its instance, while this
proxy has a hard reference, but mimics the connector in almost every other
way. This makes constructions like value = Class().connector() possible.
Without the proxy, the instance of the class would be deleted before the connector
method is called, so that the weak reference of the connector would be expired
during its call.

	Parameters

	
	instance – the instance in which the method is replaced by this connector proxy

	method – the unbound method that is replaced by this connector proxy

	caching – True, if caching shall be enabled, False otherwise. See
the set_caching() method for details

	parallelization – a flag from the connectors.Parallelization enum.
See the set_parallelization() method for details

	executor – an Executor instance,
that can be created with the connectors.executor()
function. See the OutputConnector’s
set_executor()
method for details

	
connect(connector)

	Connects this connector with another one.

	Parameters

	connector – the Connector instance
to which this connector shall be connected

	Returns

	the instance of which this Connector
has replaced a method

	
set_caching(caching)

	Specifies, if the result value of this output connector shall be cached.
If caching is enabled and the result value is retrieved (e.g. through a
connection or by calling the connector), the cached value is returned and
the replaced getter method is not called unless the result value has to
be re-computed, because an observed setter method has changed a parameter
for the computation. In this case, the getter method is only called once,
independent of the number of connections through which the result value
has to be passed.

	Parameters

	caching – True, if caching shall be enabled, False otherwise

	
set_executor(executor)

	Sets the executor, which handles the computations, when the data is
retrieved through this connector.
An executor can be created with the connectors.executor() function. It
manages the order and the parallelization of the computations, when updating
the data in a processing chain.
If multiple connectors in a processing chain need to be computed, the
executor of the connector, which started the computations, is used for
all computations.

	Parameters

	executor – an Executor instance,
that can be created with the connectors.executor()
function

	
set_parallelization(parallelization)

	Specifies, if and how the execution of this connector can be parallelized.
The choices are no parallelization, the execution in a separate thread
and the execution in a separate process.
This method specifies a hint, which level of parallelization is possible
with the connector. If the executor of the connector, through which the
computation is started, does not support the specified level, the next simpler
one will be chosen. E.g. if a connector can be parallelized in a separate
process, but the executor only allows threads or sequential execution, the
connector will be executed in a separate thread.

	Parameters

	parallelization – a flag from the connectors.Parallelization enum

	
class connectors._proxies.SingleInputProxy(instance, method, observers, announce_condition, notify_condition, laziness, parallelization, executor)

	A proxy class for input connectors.
Connector proxies are returned by the connector decorators, while the methods
are replaced by the actual connectors. Think of a connector proxy like of a
bound method, which is also created freshly, whenever a method is accessed.
The actual connector only has a weak reference to its instance, while this
proxy has a hard reference, but mimics the connector in almost every other
way. This makes constructions like value = Class().connector() possible.
Without the proxy, the instance of the class would be deleted before the connector
method is called, so that the weak reference of the connector would be expired
during its call.

	Parameters

	
	instance – the instance in which the method is replaced by this connector proxy

	method – the unbound method that is replaced by this connector proxy

	observers – the names of output methods that are affected by passing a value to this connector proxy

	announce_condition – a method, that defines the condition for the
announcements to the observing output connectors.
This method must not require any arguments apart
from self

	notify_condition – a method, that defines the condition for the
notifications to the observing output connectors.
This method must accept the new input value as
an argument in addition to self

	laziness – a flag from the connectors.Laziness enum. See
the set_laziness() method for details

	parallelization – a flag from the connectors.Parallelization enum.
See the set_parallelization() method for details

	executor – an Executor instance,
that can be created with the connectors.executor()
function. See the SingleInputConnector’s
set_executor()
method for details

	
connect(connector)

	Connects this connector with another one.

	Parameters

	connector – the Connector instance
to which this connector shall be connected

	Returns

	the instance of which this Connector
has replaced a method

	
set_executor(executor)

	Sets the executor, which handles the computations, when the data is
retrieved through this connector.
An executor can be created with the connectors.executor() function. It
manages the order and the parallelization of the computations, when updating
the data in a processing chain.
If multiple connectors in a processing chain need to be computed, the
executor of the connector, which started the computations, is used for
all computations.

	Parameters

	executor – an Executor instance,
that can be created with the connectors.executor()
function

	
set_laziness(laziness)

	Configures the lazy execution of the connector.
Normally the connectors are executed lazily, which means, that any computation
is only started, when the result of a processing chain is requested. For
certain use cases it is necessary to disable this lazy execution, though,
so that the values are updated immediately as soon as new data is available.
There are different behaviors for the (non) lazy execution, which are
described in the connectors.Laziness enum.

	Parameters

	laziness – a flag from the connectors.Laziness enum

	
set_parallelization(parallelization)

	Specifies, if and how the execution of this connector can be parallelized.
The choices are no parallelization, the execution in a separate thread
and the execution in a separate process.
This method specifies a hint, which level of parallelization is possible
with the connector. If the executor of the connector, through which the
computation is started, does not support the specified level, the next simpler
one will be chosen. E.g. if a connector can be parallelized in a separate
process, but the executor only allows threads or sequential execution, the
connector will be executed in a separate thread.

	Parameters

	parallelization – a flag from the connectors.Parallelization enum

	
class connectors._proxies.MultiInputProxy(instance, method, remove_method, replace_method, observers, announce_condition, notify_condition, laziness, parallelization, executor)

	A proxy class for multi-input connectors.
Connector proxies are returned by the connector decorators, while the methods
are replaced by the actual connectors. Think of a connector proxy like of a
bound method, which is also created freshly, whenever a method is accessed.
The actual connector only has a weak reference to its instance, while this
proxy has a hard reference, but mimics the connector in almost every other
way. This makes constructions like value = Class().connector() possible.
Without the proxy, the instance of the class would be deleted before the connector
method is called, so that the weak reference of the connector would be expired
during its call.

	Parameters

	
	instance – the instance in which the method is replaced by this connector proxy

	method – the unbound method, that is replaced by this connector proxy

	remove_method – an unbound method, that is used to remove data, that
has been added through this connector proxy

	replace_method – an unbound method, that is used to replace data,
that has been added through this connector proxy

	observers – the names of output methods that are affected by passing
a value to this connector proxy

	announce_condition – a method, that defines the condition for the
announcements to the observing output connectors.
This method must accept the data ID of the changed
output connector as an argument in addition to
self

	notify_condition – a method, that defines the condition for the
notifications to the observing output connectors.
This method must accept the data ID and the new
input value as an argument in addition to self

	laziness – a flag from the connectors.Laziness enum. See the
set_laziness() method for details

	parallelization – a flag from the connectors.Parallelization enum.
See the set_parallelization() method for details

	executor – an Executor instance,
that can be created with the connectors.executor()
function. See the MultiInputConnector’s
set_executor()
method for details

	
connect(connector)

	Connects this connector with another one.

	Parameters

	connector – the Connector instance
to which this connector shall be connected

	Returns

	the instance of which this Connector
has replaced a method

	
set_executor(executor)

	Sets the executor, which handles the computations, when the data is
retrieved through this connector.
An executor can be created with the connectors.executor() function. It
manages the order and the parallelization of the computations, when updating
the data in a processing chain.
If multiple connectors in a processing chain need to be computed, the
executor of the connector, which started the computations, is used for
all computations.

	Parameters

	executor – an Executor instance,
that can be created with the connectors.executor()
function

	
set_laziness(laziness)

	Configures the lazy execution of the connector.
Normally the connectors are executed lazily, which means, that any computation
is only started, when the result of a processing chain is requested. For
certain use cases it is necessary to disable this lazy execution, though,
so that the values are updated immediately as soon as new data is available.
There are different behaviors for the (non) lazy execution, which are
described in the connectors.Laziness enum.

	Parameters

	laziness – a flag from the connectors.Laziness enum

	
set_parallelization(parallelization)

	Specifies, if and how the execution of this connector can be parallelized.
The choices are no parallelization, the execution in a separate thread
and the execution in a separate process.
This method specifies a hint, which level of parallelization is possible
with the connector. If the executor of the connector, through which the
computation is started, does not support the specified level, the next simpler
one will be chosen. E.g. if a connector can be parallelized in a separate
process, but the executor only allows threads or sequential execution, the
connector will be executed in a separate thread.

	Parameters

	parallelization – a flag from the connectors.Parallelization enum

1.7.5. Virtual single-connectors

This section contains helper classes, that are returned by the [] operator of MultiInputConnector and MultiOutputConnector and simulate single input- and output-connectors.

	
class connectors._common._multiinput_item.MultiInputItem(connector, instance, replace_method, key, observers, executor)

	An object, that is returned by the __getitem__()
overload.

It simulates the behavior of a single-input connector, so it is possible to
use a multi-input connector as arbitrarily many single-inputs.

	Parameters

	
	connector – the multi-input connector

	instance – the instance of which the method was replaced by the
multi-input connector

	replace_method – an unbound method, that is used to replace data,
that has been added through the multi-input connector

	key – the key with which the multi-input has been accessed.

	observers – a sequence of output connectors, that observe the
multi-input connector’s value changes.

	executor – an Executor instance,
that is used, when calling the instance of this class.

	
connect(connector)

	Connects this virtual single-input to an output.

	Parameters

	connector – the connector, to which this connector shall be connected

	Returns

	the instance of which the method was replaced by the multi-input connector

	
disconnect(connector)

	Disconnects this virtual single-input from an output, to which is has been connected..

	Parameters

	connector – the connector, from which this connector shall be disconnected

	Returns

	the instance of which the method was replaced by the multi-input connector

	
class connectors._common._multioutput_item.MultiOutputItem(connector, instance, key)

	An object, that is returned by the __getitem__()
overload.

It simulates the behavior of a single-output connector, so it is possible to
use a multi-output connector as arbitrarily many single-outputs.

	Parameters

	
	connector – the multi-output connector

	instance – the instance of which the method was replaced by the
multi-output connector

	key – the key with which the multi-output has been accessed.

	
connect(connector)

	Connects this virtual single-output to an output.

	Parameters

	connector – the connector, to which this connector shall be connected

	Returns

	the instance of which the method was replaced by the multi-output connector

	
disconnect(connector)

	Disconnects this virtual single-output from an input, to which is has been connected..

	Parameters

	connector – the connector, from which this connector shall be disconnected

	Returns

	the instance of which the method was replaced by the multi-output connector

	
key()

	Returns the key, with which the multi-output connector has been accessed.

2. Organisation

This section contains organisational information and instructions for the installation of the Connectors package.

	2.1. Installation
	2.1.1. pip

	2.1.2. Installation from source

	2.2. Dependencies
	2.2.1. Python version

	2.2.2. Other packages and tools

	2.3. Makefile targets

	2.4. Licenses
	2.4.1. LGPLv3+ for the source code

	2.4.2. CC0 for the documentation

2.1. Installation

2.1.1. pip

The easiest way to install the Connectors package is probably through pip.

pip3 install connectors

If the package shall only be installed for the current user, rather than system wide, run the following command:

pip3 install --user connectors

2.1.2. Installation from source

To retrieve the sources, the git-repository of the Connectors package has to be cloned.

git clone https://github.com/JonasSC/Connectors.git Connectors

The Connectors at the end of this command specifies the directory, in which the local copy of the repository shall be created.
After cloning, move to that directory.

cd Connectors

Now the Connectors package can be installed system wide with the following command:

python3 setup.py install

Alternatively, the package can be installed only for the current user.

python3 setup.py install --user

2.2. Dependencies

2.2.1. Python version

The Connectors package is currently developed and tested with Python 3.7.
Python 3.6 is very likely to work as well.
Earlier versions are not compatible with the Connectors package.

2.2.2. Other packages and tools

The Connectors package itself does not depend on other packages.
Nevertheless, the setup, the tests and the documentation rely on third party packages and tools.

	the setup is done with setuptools.

	
	the tests are run with pytest [https://docs.pytest.org/en/latest/index.html#module-pytest].

	
	the test coverage is assessed with pytest-cov.

	the code is analyzed with Pylint and flake8.

	spell-checking is done with pyenchant.

	
	the documentation is built with sphinx.

	
	the documentation uses the sphinx_rtd_theme.

	graphs are drawn with sphinx.ext.graphviz [https://www.sphinx-doc.org/en/master/usage/extensions/graphviz.html#module-sphinx.ext.graphviz].

	some examples rely on numpy [https://numpy.org/doc/stable/reference/index.html#module-numpy] and matplotlib [https://matplotlib.org/stable/index.html#module-matplotlib].

2.3. Makefile targets

The Makefile in the source code repository of the Connectors package has the following targets:

	make test runs the unit tests.

	make test_coverage runs the unit tests and prints information about their test coverage.

	make lint checks the package and the unit tests with Pylint

	make docs builds the documentation

2.4. Licenses

2.4.1. LGPLv3+ for the source code

The source code of the Connectors package can be distributed and modified under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version.
A copy of this license can be found in the source code repository in the file LICENSE.txt or on the website of the GNU project [http://www.gnu.org/licenses/].

2.4.2. CC0 for the documentation

The documentation for the Connectors package and the source code snippets in it can be distributed and modified under the terms of the CC0 license as published by the Creative Commons Corporation.
This means, that the documentation and the source code snippets are practically in the public domain.
The full text of the license can be found on the website of the Creative Commons Corporation [https://creativecommons.org/publicdomain/zero/1.0/legalcode].

It would be great, if the redistributed pieces of this work were marked with a reference to this project, but this is by no means mandatory.

3. Information

This section contains background information and implementation details about the Connectors package.

	3.1. Lazy execution
	3.1.1. An example script

	3.1.2. Disabling lazy execution

	3.2. Caching

	3.3. Automated parallelization
	3.3.1. The default settings

	3.3.2. The parallelization parameter

	3.3.3. Executors

	3.4. Implementation details
	3.4.1. asyncio

	3.4.2. Connector proxies - avoiding circular references

3.1. Lazy execution

By default, the connectors are executed lazily, which means, that input values are not propagated through a processing network, unless an output value, which depends on them, is requested.
This is an important design decision, not only, because it saves potentially unnecessary computations, but also, because the correct input data might not be available at the time of setting up the processing network.
In this case, the processing objects still have their default values, which might lead to incompatible results and subsequently errors, when executing computations in a processing network without correct input.

3.1.1. An example script

The following example shows, what happens, when a processing chain is set up, when a value is changed and when a value is retrieved.
It consists of two trivial processors, that simply pass their input value to their output.

>>> import connectors
>>> p1 = connectors.blocks.PassThrough()
>>> p2 = connectors.blocks.PassThrough().input.connect(p1.output) # (Connect)
>>> _ = p1.input("data") # (Set)
>>> p2.output() # (Get)
'data'

The following graph illustrates the communication between the input and output connectors of p1 and p2.
The columns in this graph correspond to the connectors, while the rows are in the order, in which the depicted events occur.
The yellow ellipses stand for the commands, from the example script above.
The symbols, that represent the connectors, are either green, after the respective method has been executed, or red, if there are pending value changes, that require an execution of the method, in order to compute the current output value.

[image: digraph LazyExecutionExample{ rankdir = LR; p1_input_label [label="p1.input", shape=plain, fontsize=32]; p1_input_set [label="", shape=parallelogram, style=filled, fillcolor=red]; p1_input_notify [label="", shape=parallelogram, style=filled, fillcolor=green]; p1_output_label [label="p1.output", shape=plain, fontsize=32]; p1_output_connect [label="", shape=trapezium, style=filled, fillcolor=red]; p1_output_set [label="", shape=trapezium, style=filled, fillcolor=red]; p1_output_notify [label="", shape=trapezium, style=filled, fillcolor=red]; p1_output_request [label="", shape=trapezium, style=filled, fillcolor=red]; p1_output_execute [label="", shape=trapezium, style=filled, fillcolor=green]; p2_input_label [label="p2.input", shape=plain, fontsize=32]; p2_input_connect [label="", shape=parallelogram, style=filled, fillcolor=red]; p2_input_set [label="", shape=parallelogram, style=filled, fillcolor=red]; p2_input_notify [label="", shape=none]; p2_input_request [label="", shape=parallelogram, style=filled, fillcolor=red]; p2_input_execute [label="", shape=parallelogram, style=filled, fillcolor=green]; p2_output_label [label="p2.output", shape=plain, fontsize=32]; p2_output_connect [label="", shape=trapezium, style=filled, fillcolor=red]; p2_output_set [label="", shape=trapezium, style=filled, fillcolor=red]; p2_output_notify [label="", shape=none]; p2_output_request [label="", shape=trapezium, style=filled, fillcolor=red]; p2_output_execute [label="", shape=trapezium, style=filled, fillcolor=green]; connect [label="Connect", style=filled, fillcolor=yellow]; set [label="Set", style=filled, fillcolor=yellow]; get [label="Get", style=filled, fillcolor=yellow]; return [label="Return", style=filled, fillcolor=yellow]; {rank="same"; connect; set} {rank="same"; get; return} {rank="same"; p1_input_label; p1_input_set; p1_input_notify} {rank="same"; p1_output_label; p1_output_connect; p1_output_set; p1_output_notify; p1_output_request; p1_output_execute} {rank="same"; p2_input_label; p2_input_connect; p2_input_set; p2_input_notify; p2_input_request; p2_input_execute} {rank="same"; p2_output_label; p2_output_connect; p2_output_set; p2_output_notify; p2_output_request; p2_output_execute} p1_output_label -> p1_output_connect -> p1_output_set-> p1_output_notify -> p1_output_request -> p1_output_execute [style="invis"]; p2_input_label -> p2_input_connect -> p2_input_set -> p2_input_notify -> p2_input_request -> p2_input_execute [style="invis"]; p2_output_label -> p2_output_connect -> p2_output_set -> p2_output_notify -> p2_output_request -> p2_output_execute [style="invis"]; p1_input_label -> p1_output_label -> p2_input_label -> p2_output_label [style="invis"]; p1_output_execute -> p1_output_execute [style="invis"]; connect -> p1_output_connect; p1_output_connect -> p2_input_connect [label="announce"]; p2_input_connect -> p2_output_connect [label="announce"]; set -> p1_input_set; p1_input_set -> p1_output_set [label="announce"]; p1_output_set -> p2_input_set [label="announce"]; p2_input_set -> p2_output_set [label="announce"]; p1_input_set -> p1_input_notify [label="execute"]; p1_input_notify -> p1_output_notify [label="notify"]; p2_output_request -> get [dir="back"]; p2_input_request -> p2_output_request [label="request", dir="back"]; p1_output_request -> p2_input_request [label="request", dir="back"]; p1_output_request -> p1_output_execute [label="execute"]; p1_output_execute -> p2_input_execute [label="notify"]; p2_input_execute -> p2_input_execute [label="execute"]; p2_input_execute -> p2_output_execute [label="notify"]; p2_output_execute -> p2_output_execute [label="execute"]; p2_output_execute -> return; }]

This graph shows the behavior of the lazily executed connectors:

	When establishing a connection, the value change is announced to all connectors down the processing chain.

	When calling an input connector, the value change is announced, too.
Additionally, the corresponding setter method is executed and the observing output connectors (which belong to the same object) are notified, that the setter has been executed.
This means, that the output connectors do not have to request the setters execution, when they themselves receive a request to be executed.

	When an output connector is called, it requests the upstream connectors to be executed and waits for the corresponding notifications, before it executes its own getter method and returns the result.
It happens only in this step, that the methods of the connectors are executed.

3.1.2. Disabling lazy execution

Input connectors can be configured to automatically request the data of connected outputs by passing a flag from the connectors.Laziness enum to its set_laziness() method.

An example for the necessity of eager execution would be a plot, which shall automatically update, whenever new data can be computed.
In order to avoid the aforementioned problem of propagating default values, it is recommended to implement such classes with lazy execution enabled and disable the lazy execution as soon as the processing network has been intitialized with correct data.

3.2. Caching

By default, output connectors cache the return values of their wrapped getter methods.
This shall avoid unnecessary recomputations, when the output connectors are called multiple times.

The caching can only work well, when all setters, that affect the return value of an output connector, are decorated as input connectors, which are observed by that output connector.

If this is not the case, the caching can be disabled by passing False to an output connector’s set_caching() method.
Alternatively, the default setting for caching the result of a particular method can be changed by passing caching=False to the Output decorator of the method.

3.3. Automated parallelization

If a processing network is branched, so that different operations can be executed in parallel, the Connectors package has the functionality to do so.
This document provides some background information on this topic, since the distinction between a connector’s parallelization parameter and its executor might be counter-intuitive.

3.3.1. The default settings

By default, the execution of output connectors are parallelized in different threads, while input connectors are executed sequentially.
This choice has been made, because the complex computations are usually done in the getter methods, while the setters often only store parameters, which is such a short operation, that it would be slowed down by the overhead of a parallelization.

Preferring threads over processes in the default setting is justified by the lower overhead of threads and fewer constraints (e.g. pickle-ability of objects, that are passed between processes).
Also, many libraries such as numpy [https://numpy.org/doc/stable/reference/index.html#module-numpy] release the GIL in many of their functions, so that they do run concurrently, when using threads.

3.3.2. The parallelization parameter

The parallelization parameter defines, which methods of parallelization are allowed for the given connector.

The parallelization parameter is meant to be configured in the decorator, when implementing processing classes, but connectors also provide a set_parallelization() method to configure the parallelization of individual instances.
It must be set to a flag of the connectors.Parallelization enum.

	Enforcing a sequential execution is useful for reducing the overhead, when doing short operations.
Sometimes it is even necessary to disable the parallelization, like for example in GUI applications, where the drawing operations must be executed in the same thread.

	As explained above, threaded parallelization is often a good compromise.

	Using processes for the parallelization requires both the processing class and the data, that is passed through its connectors, to be pickle-able.
Also, the overhead of starting an operation in a separate process and retrieving its result is much higher than with using threads, so process-based parallelization is only worth the effort for long running computations.
Nevertheless, it is often recommended to allow the use of processes with the parallelization parameter, when implementing a processing class, if the constraints on pickle-ability are met.
The actual parallelization method can later be chosen after setting up a processing network for a specific application, by specifying the executor of the connector, that triggers the computations.
At this stage, the lengths of the computations can often be estimated better, than during the implementation of the classes.

3.3.3. Executors

If an operation actually is parallelized as allowed by its parallelization parameter, is decided by the executor of the connector, that triggers the computations.

Executors are created with the factory function connectors.executor(), which takes the maximum number of threads and processes for the parallelization as parameters.
Think of executors as wrappers around the concurrent.futures.ThreadPoolExecutor [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor] and concurrent.futures.ProcessPoolExecutor [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ProcessPoolExecutor] classes.
They check, how a connector is allowed to be parallelized and then execute it accordingly:

	If a connector is allowed to be parallelized in a more complex way than the executor is capable of, the next simpler method for parallelization, that is available is used.
The complexity hierarchy for this decision in descending order is process-based parallelization, separate threads and as last resort sequential execution.

	If a connector can be executed in a separate thread/process and the executor provides this functionality, the connector will never be executed in the main thread/process.

Only one executor is used for all computations, that are required for a requested result.
This is usually the executor of the output connector, through which the result is retrieved.
With non-lazy connectors, that request results immediately, when a parameter is set, the executor of the input connector for that parameter is used.
So changing the executors of connectors in the middle of a processing chain usually has no effect.

3.4. Implementation details

3.4.1. asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio]

The Connectors package uses asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] to model the dependencies between the connectors and schedule their execution.
The event loop is started by the connector, which triggers the computations and ends, when that connector’s computation has finished.

3.4.2. Connector proxies - avoiding circular references

Note

Circular references occur, when objects have references to each other, so that their reference count never reaches zero, even when there is no reference to the objects in the active code.
In such a case, the objects are not automatically deleted by Python’s reference counting mechanism.

Python uses bound methods and unbound methods to avoid circular references, in which an object has references to its methods, while the methods have a reference to the object.
Unbound methods are basically functions, which require the object to be passed as the first parameter, which is commonly called self.
An object has a reference to its class, which has references to its unbound methods, but the unbound methods have no reference to the object.
When a method is accessed, Python automatically creates a bound method by predefining the first parameter with the object.
Obviously, this causes bound methods to have a reference to the object, but since the object does not store references to bound methods, circular references do not occur.

Unbound methods are attributes of a class, which cannot store information about individual objects.
Connectors on the other hand must be able to store such information, like established connections or configurations about their behavior.
This requires the connectors to be persistent, unlike bound methods, which are created freshly, whenever they are required.
Also, in order to execute the method, which they have replaced, connectors have a reference to the object, to which they belong, which leads to circular references.

In the Connectors package, this problem is addressed by using weak references for the connector’s reference to their object.
This alone is not sufficient though, since this would break the functionality to call a connector immediately after instantiating an object:

result = ExampleClass().connector()

In the above example, an object of ExampleClass is created and and its connector connector() is accessed.
Since no reference of the object is stored, except for the weak reference of the connector, the object will be garbage collected after accessing the connector, but before executing it.
So the connector cannot be executed.

To prevent objects from being garbage collected prematurely, the Connectors package uses a mechanism similar to the bound and unbound methods from Python.
As long as no individual information has to be stored in the connector, the method is not replaced by a connector object.
Instead a ConnectorProxy object is created each time, when the connector is accessed.
Similar to bound methods, the connector proxy has a reference to the object, but not vice versa.
Only when establishing a connection or when changing the configuration, the method is replaced by a connector.

4. Tutorials

This section contains tutorials, which demonstrate and explain the functionalities of the Connectors package.

	4.1. Measuring a transfer function (demonstrates the core functionalities)

	4.2. Impementing a multiplexer (demonstrates the use of a multi-input connector as arbitrarily many single-input connectors)

	4.3. Improving the multiplexer (demonstrates avoiding unneccessary computations with conditional input connectors)

	4.4. Implementing a polynomial (demonstrates the encapsulation of a processing network in a single class with macro connectors)

	4.5. Improving the polynomial implementation (demonstrates memory saving techniques)

4.1. Measuring a transfer function (demonstrates the core functionalities)

This tutorial walks through a simple example of determining a transfer function with processing objects, that are connected with the functionalities of the Connectors package.

4.1.1. What is a transfer function

A transfer function describes, how a linear, time-invariant system amplifies and delays the frequency components of its input signal.
Examples of such systems are equalizers of HiFi systems, which allow to tweak the system’s sound by boosting or attenuating certain frequency regions.
Or radio tuners, which supress all frequencies except for the one of the channel, that shall be received.
The reflections and reverberations of a concert hall, which a listener experiences when attending an event there, can also be described by a transfer function.

The transfer function of a system can be measured by sending a known input signal into the system and recording its response.
After that, the spectrum of this response has to be divided by the spectrum of the input signal.
Think of this as of compensating for a bias of the input signal, which might excite certain frequencies at a higher level than others.
If this is the case, the recorded response will also have an exaggerated amount of these frequency components, which is not due them being boosted by the system, but due to a biased excitation.
The divison normalizes the response by attenuating the frequency components, that had been exaggerated in the excitation signal.

Of course, the exctiation signal has to excite all frequencies, at which the system shall be modeled.
Otherwise, the division will divide by zero and the resulting transfer function will be invalid at the non-excited frequencies.

	For more background on transfer functions, you can read the following Wikipedia articles (sorted in increasing order of theoretical complexity):

	
	Frequency response [https://en.wikipedia.org/wiki/Frequency_response]

	Transfer function [https://en.wikipedia.org/wiki/Transfer_function]

	Linear time-invariant theory [https://en.wikipedia.org/wiki/Linear_time-invariant_theory]

The following block diagram shows the computation steps for determining the transfer function of a system:

[image: digraph Measurement{ rankdir=LR; generator -> system -> fft1 -> division -> plot; generator -> fft2 -> division; generator [label="Signal generator", shape=hexagon]; system [label="System", shape=doubleoctagon, color=red]; fft1 [label="FFT 1", shape=box, color=blue]; division [label="÷", shape=box, color=blue]; fft2 [label="FFT 2", shape=box, color=blue]; plot [label="Plot", shape=parallelogram]; {rank=same; fft1, fft2}; }]

First, the excitation signal is created in Signal generator.
In this tutorial, a linear sweep is used, which is a sine wave, which continuously increases its frequency over time, thus exciting all the frequencies at which the system shall be modeled.
The sweep is used, because it is mathematically well defined, easy to implement and for demonstrating what will happen, if the frequency range of the excitation signal is limited.
For the purpose of measuring a transfer function, other signals such as noise or maximum length sequences are also suitable.

The generated excitation signal is fed into the System.
The spectrum of the system’s response is computed by transforming the response to the frequency domain with the help of the fast fourier transform in block FFT 1.
Meanwhile, the spectrum of the excitation signal is computed by the block FFT 2.
The resulting transfer function is computed by the division ÷ and displayed by the Plot.

4.1.2. Defining a system, of which the tranfer function shall be measured

For reducing the lines of code for this tutorial, the system, that shall be analyzed by measuring its transfer function, is modeled with its impulse response.
The impulse response is mathematically connected to the transfer function by the (inverse) fourier transform.

[image: digraph ImpulseResponse{ rankdir=LR; ir -> fft -> tf -> ifft -> ir; ir [label="impulse response", shape=hexagon]; fft [label="Fourier transform", shape=box]; tf [label="transfer function", shape=hexagon]; ifft [label="inverse Fourier transform", shape=box]; {rank=same; fft, ifft}; }]

The following code implements a class for defining a linear time-invariant system.
It requires an impulse response as constructor parameter, in order to define the system’s behavior.
Furthermore it has a setter and a getter method for passing the excitation signal and retrieving the response.

class LinearSystem:
 def __init__(self, impulse_response):
 self.__impulse_response = impulse_response
 self.__input = None

 @connectors.Input("get_output")
 def set_input(self, signal):
 self.__input = signal

 @connectors.Output()
 def get_output(self):
 return numpy.convolve(self.__input, self.__impulse_response, mode="full")[0:len(self.__input)]

The setter method set_input() is decorated to become an input connector, so that the output of the generator of the excitation signal can be connected to it.
Note that the name of the getter method get_output() is passed as a parameter to the input decorator.
This models the dependency of the getter’s return value on whether the setter has been called.
So whenever a new value is passed to the setter, the getter is notified, that it can produce a new result.

The getter method get_output() is decorated to become an output connector.
Note that this is the method, that actually does the expensive computation, while the setter only stores the received parameter.
This is a recommended practice when using the Connectors package, since the lazy execution and the caching capability of the output connectors can avoid, that these computations are performed unnecessarily.

4.1.3. Generation of a measurement signal

Using the Connectors package with the generator class for the linear sweep is straight forward.
In production code, all parameters, that can be passed to the constructor, should have a setter method, that is decorated to become an input connector.
This has been omitted in this tutorial to keep the code short.

class SweepGenerator:
 def __init__(self, start_frequency=20.0, stop_frequency=20000.0, length=2 ** 16):
 self.__start_frequency = start_frequency
 self.__stop_frequency = stop_frequency
 self.__length = length

 @connectors.Input("get_sweep")
 def set_start_frequency(self, frequency):
 self.__start_frequency = frequency

 @connectors.Output()
 def get_sweep(self):
 f0 = self.__start_frequency
 fT = self.__stop_frequency
 T = self.__length / sampling_rate # the duration of the signal
 t = numpy.arange(0.0, T, 1.0 / sampling_rate) # an array with the time samples
 k = (fT - f0) / T # the "sweep rate"
 return numpy.sin(2.0 * math.pi * f0 * t + math.pi * k * (t ** 2))

4.1.4. Computation of the fourier transform

Decorating the methods of the class for the fourier transform works just like in the previous classes.
But the deletion of the input signal in the getter method get_spectrum() is noteworthy.

class FourierTransform:
 def __init__(self, signal=None):
 self.__signal = signal

 @connectors.Input("get_spectrum")
 def set_signal(self, signal):
 self.__signal = signal

 @connectors.Output()
 def get_spectrum(self):
 spectrum = numpy.fft.rfft(self.__signal)
 self.__signal = None
 return spectrum

Since the input signal is the only parameter for the fourier transform, the reference to it can be deleted after computing the output spectrum, as long as the caching of the output spectrum is enabled.
The only situation, in which the cached spectrum becomes invalid and the output spectrum has to be recomputed, is when a new input signal is provided.
So the old input signal is no longer needed after the computation.

In this example, the input signals for the two fourier transform classes would not be garbage collected, because they are cached in the outputs of the signal generator and the system under test.
The memory requirements for running the script of this tutorial are moderate, so that the code has not been optimized for minimal memory consumption by deactivating caching and other measures.
In some practical situations, these optimizations can reduce the memory consumption significantly.

4.1.5. Computation of the transfer function

The class, that computes the transfer function by dividing the response spectrum by the excitation spectrum is again straight forward.
The only difference, that has not been shown in previous classes is, that an output connector depends on the parameters of multiple input connectors.
Each of these receives the name of the dependent output connector as a parameter for the Input decorator.

class TransferFunction:
 def __init__(self, excitation=None, response=None):
 self.__excitation = excitation
 self.__response = response

 @connectors.Input("get_transfer_function")
 def set_excitation(self, signal):
 self.__excitation = signal

 @connectors.Input("get_transfer_function")
 def set_response(self, signal):
 self.__response = signal

 @connectors.Output()
 def get_transfer_function(self):
 return numpy.divide(self.__response, self.__excitation)

4.1.6. Ploting the transfer function

For the sake of simplicity, the plotting class in this tutorial only plots the magnitude of the transfer function.
Plotting the phase aswell, requires some additional functionalities of matplotlib [https://matplotlib.org/stable/index.html#module-matplotlib], which is not in the scope of this tutorial.

The plotting class demonstrates the use of a multi-input connector for plotting multiple spectrums in one plot.

class MagnitudePlot:
 def __init__(self):
 self.__spectrums = connectors.MultiInputData()

 @connectors.MultiInput("show")
 def add_spectrum(self, spectrum):
 return self.__spectrums.add(spectrum)

 @add_spectrum.remove
 def remove_spectrum(self, data_id):
 del self.__spectrums[data_id]

 @add_spectrum.replace
 def replace_spectrum(self, data_id, spectrum):
 self.__spectrums[data_id] = spectrum

 @connectors.Output(parallelization=connectors.Parallelization.SEQUENTIAL)
 def show(self):
 for d in self.__spectrums:
 x_axis_data = numpy.linspace(0.0, sampling_rate / 2.0, len(self.__spectrums[d]))
 magnitude = numpy.abs(self.__spectrums[d])
 pyplot.plot(x_axis_data, magnitude)
 pyplot.loglog()
 pyplot.xlim(20.0, sampling_rate / 2.0)
 pyplot.grid(b=True, which="both")
 pyplot.show()

Decorating the add_spectrum() method to become a multi-input connector is similar to the regular input connectors.
It also gets the name of the dependent output connectors passed as a parameter.
It is improtant though, that the method of multi-input returns an ID, with which the added dataset can be identified, when it shall be deleted or replaced.

Specifying a remove-method for a multi-input connector is mandatory.
This method is called whenever a dataset is removed, for example by disconnecting an output connector from the multi-input.
Notice that the remove-method remove_spectrum() is decorated with a method of the multi-input connector instead of an object from the Connectors package.

The replace-method replace_spectrum() of the multi-input connector is called, whenever an added spectrum shall be replaced by an updated version.
If none is specified, the replacement will be done by removing the old dataset and adding a new one, which does not preserve the order, in which the datasets have been added.

The spectrums, that are added through the add_spectrum() method are managed by a MultiInputData container.
This is basically an OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict], that has been extended with an add() method, which adds the given dataset to the dictionary and returns a unique ID, under which the dataset has been stored.

The show() method is decorated to become an output connector, despite the fact that it does not return any result value.
Nevertheless, this allows to model, that showing the plot depends on the input data for the plot.

Note that the automated parallelization is disabled for this method by passing the flag Parallelization. SEQUENTIAL as the parallelization parameter for the output decorator.
By default, the Connectors package parallelizes independent computations in separate threads.
Process-based parallelization is also available, but this requires the data, that is passed through the connections, to be pickle-able and the pickling introduces additional overhead.
GUI functionalities often require, that all updates of the GUI are done by the same thread, which is why this example script will raise errors if the parallelization of the show() method is not disabled.

4.1.7. Instantiating the processing network

Now that all the necessary processing classes are implemented, the network for measuring and computing the transfer function can be set up.

First the linear, time-invariant system is instantiated.
The impulse response is chosen to have a rolloff at both high and low frequencies.

 impulse_response = numpy.zeros(2 ** 16)
 impulse_response[0:3] = (-1.0, 0.0, 1.0)
 system = LinearSystem(impulse_response)

After that, the sweep generator is created and connected to the system, that shall be measured.
The connection is established by calling the connect() method of the output connector get_sweep() with the input connector set_input() from the system.
The connect() method returns the instance, to which the connector belongs.
This way, the instantiation of a processing class and the connection of one of its connectors can be done in one line, like this example shows.

 sweep = SweepGenerator().get_sweep.connect(system.set_input)

Instantiating the fourier transform classes is straight forward now.
Note, that this time, the connect() method of the input connectors are called with an output connector as a parameter, while it is the other way around, during the instantiation of the sweep generator.
Both ways are possible.

 excitation_fft = FourierTransform().set_signal.connect(sweep.get_sweep)
 response_fft = FourierTransform().set_signal.connect(system.get_output)

The class for dividing the two spectrums is created without connecting any of its connectors in the same line.
Since two of its connectors have to be connected, the connections are established in separate but similar lines, which improves the readability of the code.

 transfer_function = TransferFunction()
 transfer_function.set_excitation.connect(excitation_fft.get_spectrum)
 transfer_function.set_response.connect(response_fft.get_spectrum)

Finally, the plot is created and shown.
In addition to the measured transfer function, the plot also shows the spectrum of the system’s impulse response, so it can be seen how the measured transfer function deviates from the expected spectrum.

[image: digraph Plot{ rankdir=LR; ir -> system; ir -> fft0 -> plot; generator -> system -> fft1 -> division -> plot; generator -> fft2 -> division; ir [label="Impulse response", shape=octagon, color=green]; fft0 [label="FFT", shape=box, color=green]; generator [label="Signal generator", shape=hexagon]; system [label="System", shape=doubleoctagon, color=red]; fft1 [label="FFT", shape=box, color=blue]; division [label="÷", shape=box, color=blue]; fft2 [label="FFT", shape=box, color=blue]; plot [label="Plot", shape=parallelogram]; {rank=same; ir, system}; {rank=same; fft0, fft1, fft2}; }]

Adding the measured transfer function is done through connections, just like the other connections, that have been established before.
It is noteworthy though, how the spectrum of the impulse response is added by simply calling the respective methods and without relying on the functionality of the Connectors package.
This shows, that the decorated methods can still be used as normal methods, even when they are extended with the functionality of a connector.

 magnitude_plot = MagnitudePlot()
 magnitude_plot.add_spectrum(FourierTransform(impulse_response).get_spectrum())
 transfer_function.get_transfer_function.connect(magnitude_plot.add_spectrum)
 magnitude_plot.show()

This results in the following plot.
The measured transfer function matches well with the spectrum of the original impulse response, but especially at low frequencies, there are slight deviations.
Above 20kHz, the two measured frequency response becomes highly inaccurate, which is because the sweep has not excited these frequencies, so the computation of the transfer function becomes a division by zero.

[image: ../_images/transfer_function1.png]
To demonstrate the automated updating of data in a processing network, the start frequency of the sweep is changed and the plot is shown again.

 sweep.set_start_frequency(1000.0)
 magnitude_plot.show()

The following plot shows the effect of raising the start frequency of the sweep to a value in the plotted frequency range.
Since the low frequencies are no longer properly excited, the measurement of the tranfer function is invalid here aswell.

[image: ../_images/transfer_function2.png]

4.1.8. The complete script

import math
import numpy
import connectors
from matplotlib import pyplot

sampling_rate = 44100.0

class LinearSystem:
 def __init__(self, impulse_response):
 self.__impulse_response = impulse_response
 self.__input = None

 @connectors.Input("get_output")
 def set_input(self, signal):
 self.__input = signal

 @connectors.Output()
 def get_output(self):
 return numpy.convolve(self.__input, self.__impulse_response, mode="full")[0:len(self.__input)]

class SweepGenerator:
 def __init__(self, start_frequency=20.0, stop_frequency=20000.0, length=2 ** 16):
 self.__start_frequency = start_frequency
 self.__stop_frequency = stop_frequency
 self.__length = length

 @connectors.Input("get_sweep")
 def set_start_frequency(self, frequency):
 self.__start_frequency = frequency

 @connectors.Output()
 def get_sweep(self):
 f0 = self.__start_frequency
 fT = self.__stop_frequency
 T = self.__length / sampling_rate # the duration of the signal
 t = numpy.arange(0.0, T, 1.0 / sampling_rate) # an array with the time samples
 k = (fT - f0) / T # the "sweep rate"
 return numpy.sin(2.0 * math.pi * f0 * t + math.pi * k * (t ** 2))

class FourierTransform:
 def __init__(self, signal=None):
 self.__signal = signal

 @connectors.Input("get_spectrum")
 def set_signal(self, signal):
 self.__signal = signal

 @connectors.Output()
 def get_spectrum(self):
 spectrum = numpy.fft.rfft(self.__signal)
 self.__signal = None
 return spectrum

class TransferFunction:
 def __init__(self, excitation=None, response=None):
 self.__excitation = excitation
 self.__response = response

 @connectors.Input("get_transfer_function")
 def set_excitation(self, signal):
 self.__excitation = signal

 @connectors.Input("get_transfer_function")
 def set_response(self, signal):
 self.__response = signal

 @connectors.Output()
 def get_transfer_function(self):
 return numpy.divide(self.__response, self.__excitation)

class MagnitudePlot:
 def __init__(self):
 self.__spectrums = connectors.MultiInputData()

 @connectors.MultiInput("show")
 def add_spectrum(self, spectrum):
 return self.__spectrums.add(spectrum)

 @add_spectrum.remove
 def remove_spectrum(self, data_id):
 del self.__spectrums[data_id]

 @add_spectrum.replace
 def replace_spectrum(self, data_id, spectrum):
 self.__spectrums[data_id] = spectrum

 @connectors.Output(parallelization=connectors.Parallelization.SEQUENTIAL)
 def show(self):
 for d in self.__spectrums:
 x_axis_data = numpy.linspace(0.0, sampling_rate / 2.0, len(self.__spectrums[d]))
 magnitude = numpy.abs(self.__spectrums[d])
 pyplot.plot(x_axis_data, magnitude)
 pyplot.loglog()
 pyplot.xlim(20.0, sampling_rate / 2.0)
 pyplot.grid(b=True, which="both")
 pyplot.show()

if __name__ == "__main__":
 impulse_response = numpy.zeros(2 ** 16)
 impulse_response[0:3] = (-1.0, 0.0, 1.0)
 system = LinearSystem(impulse_response)

 sweep = SweepGenerator().get_sweep.connect(system.set_input)

 excitation_fft = FourierTransform().set_signal.connect(sweep.get_sweep)
 response_fft = FourierTransform().set_signal.connect(system.get_output)

 transfer_function = TransferFunction()
 transfer_function.set_excitation.connect(excitation_fft.get_spectrum)
 transfer_function.set_response.connect(response_fft.get_spectrum)

 magnitude_plot = MagnitudePlot()
 magnitude_plot.add_spectrum(FourierTransform(impulse_response).get_spectrum())
 transfer_function.get_transfer_function.connect(magnitude_plot.add_spectrum)
 magnitude_plot.show()

 sweep.set_start_frequency(1000.0)
 magnitude_plot.show()

4.2. Impementing a multiplexer (demonstrates the use of a multi-input connector as arbitrarily many single-input connectors)

This tutorial shows and explains a simple implementation of a multiplexer.
With this example, the usage of a multi-input connector as arbitrarily many single-input connectors is demonstrated.
A follow-up for this tutorial demonstrates the use of conditional input connectors, to avoid unnecessary computations.

4.2.1. What is a multiplexer

A multiplexer is a device with many inputs and one output, which allows to select, which one of the inputs shall be routed to the output.

[image: digraph Multiplexer{ rankdir = LR; input1 [label="Input 1", shape=parallelogram]; input2 [label="Input 2", shape=parallelogram]; inputx [label="...", shape=none]; inputn [label="Input N", shape=parallelogram]; output [label="Output", shape=trapezium]; {rank="same"; input1; input2; inputx; inputn}; input2 -> output [label="selected"]; inputx -> output [style="invis"]; input1 -> input2 -> inputx -> inputn [style="invis"]; }]

A very common application for multiplexers is signal routing in electronic circuits, for which there is a huge variety of integrated circuits, such as the 74LS151 or the CMOS 4097.
In some occasions, a multiplexer can also be helpful to implement a processing networs, which is why the Connectors package provides the Multiplexer class.

4.2.2. Arbitrarily many input connectors

To suit most applications, the number of inputs of the multiplexer should not be hard coded.
Instead it should dynamically scale the number of input connectors.
Also, the keys for selecting the input, that shall be routed to the output, should ideally be arbitrary, so the user can decide, if the keys are integers, strings or any other objects.

Theoretically, it is possible to implement such an array of an arbitrary number of input connectors by instantiating SingleInputConnectors dynamically.
But such an implementation would require a lot of code and it would depend on implementation details of the Connectors package, that might change in the future.

For applications like this, a MultiInputConnector can be accessed with the [] operator, which returns a an object, that behaves like a single-input connector.
This virtual input connector can be called directly or be connected to an output connector.
The key, that is passed to the [] operator is the data ID, under which the MultiInputConnector stores the given input value.
This allows the user to select the data ID manually, rather than having it generated by the connector, which in turn allows to use the data ID as selector for a multiplexer.

4.2.3. Implementation of the multiplexer

>>> import connectors

The following code shows the implementation of a multiplexer.

>>> class Multiplexer:
... def __init__(self, selector=None):
... self.__selector = selector
... self.__data = connectors.MultiInputData()
...
... @connectors.Output()
... def output(self):
... if self.__selector in self.__data:
... return self.__data[self.__selector]
... else:
... return None
...
... @connectors.Input("output")
... def select(self, selector):
... self.__selector = selector
... return self
...
... @connectors.MultiInput("output")
... def input(self, data):
... return self.__data.add(data)
...
... @input.remove
... def remove(self, data_id):
... del self.__data[data_id]
... return self
...
... @input.replace
... def replace(self, data_id, data):
... self.__data[data_id] = data
... return data_id

Note, that it is required, that the replace() method returns the ID, under which the new input value is stored.
Apart from this, the implementation is straight forward.

	The input(), remove() and replace() methods implement a very common pattern for multi-input connectors, in which the input values are stored in a MultiInputData instance.

	The select() method is an input connector, through which the key for selecting the input, that is routed to the output.

	The output() method returns the value from the selected input or None, if the selector key is invalid.

	The select() and remove() methods return self to allow method chaining.

4.2.4. Usage of the multiplexer

Instantiating the multiplexer is done the usual way.

>>> multiplexer = Multiplexer()

When calling the input, it can be accessed with the [] operator to specify the selector key.

>>> multiplexer.input["key 1"]("value 1")
<__main__.Multiplexer object at 0x...>
>>> multiplexer.input["key 2"]("value 2")
<__main__.Multiplexer object at 0x...>
>>> multiplexer.select("key 2")
<__main__.Multiplexer object at 0x...>
>>> multiplexer.output()
'value 2'

Note, that the call of the virtual single-input method returns the multiplexer instance.
This is an implementation choice of the Connectors package and cannot be influenced by how the decorated method is implemented.
The idea behind this choice is, that it allows chaining the calls of the input method.
Theoretically, all of the above can be written in one line:

>>> Multiplexer().input["key 1"]("value 1").input["key 2"]("value 2").select("key 2").output()
'value 2'

Under the hood, the virtual single-inputs, that are created with the [] operator, call the replace() method.
So the above script is equivalent to the following.

>>> multiplexer.replace("key 1", "value 1")
'key 1'
>>> multiplexer.replace("key 2", "value 2")
'key 2'
>>> _ = multiplexer.select("key 2")
>>> multiplexer.output()
'value 2'

The input() method can also be called like an ordinary multi-input connector.
In this case, the returned data ID must be stored in a variable, so it can be used as selector key.

>>> key1 = multiplexer.input("value 1")
>>> key2 = multiplexer.input("value 2")
>>> _ = multiplexer.select(key2)
>>> multiplexer.output()
'value 2'

The latter two approaches do not work in the context of connecting an output connector to one of the inputs of the multiplexer.
The replace() method does not accept connections, while when using the input() method the usual way, the data ID is unknown to the user, so it cannot be used as a selector key.
Therefore, connections to the multiplexer have to use the virtual single-inputs from the [] operator.

>>> data_source = connectors.blocks.PassThrough("value 3 (value from the data source)")
>>> _ = data_source.output.connect(multiplexer.input["key 3"])
>>> _ = multiplexer.select("key 3")
>>> multiplexer.output()
'value 3 (value from the data source)'

4.2.5. Restrictions and requirements for virtual single-input connectors

When the [] operator calls the replace method of the multi-input connector, it is possible, that the data ID, which is passed to the method, does not exist, yet.
Therefore, the replace methods of multi-input connectors, that shall be used as virtual single-inputs, must be able to hanlde unknown data IDs in a reasonable manner.
This is usually the case, when the input data is managed by dictionaries like a MultiInputData instance.

For ordinary multi-input connectors, it is optional to specify a replace method.
If none is specified, replacing data is done with the remove method and the decorated input method.
This will obviously not work with the [] operator, because calling the decorated input method will generate a new data ID, that is not known outside the class.

When managing the input data of a multi-input connector with dictionaries like a MultiInputData instance, the data IDs must be hashable.
Therefore it is not possible to use mutable objects like list instances as selector keys for this Multiplexer.

4.3. Improving the multiplexer (demonstrates avoiding unneccessary computations with conditional input connectors)

The multiplexer from the previous tutorial can cause unnecessary computations in certain constellations.
This tutorial shows how to avoid these computations by specifying conditions for the propagation of value changes of the input connector.

4.3.1. Situations, in which unnecessary computations occur

If any input of the simple multiplexer from the previous tutorial receives value update, this update will be propagated down the processing chain.
In case, the updated input is not currently selected, the output of the multiplexer will produce the same value as before the value update, which causes an unnecessary recomputation of the processing chain.

In order to avoid these unnecessary computations, a means to interrupt the processing of the chain is required.
The (multi-) input connectors have a feature to specify conditions on the propagation of value changes, which can be used for this purpose.

4.3.2. Conditions for the input connectors

Inputs and multi-inputs have two decorators for methods, which specify the conditional propagation of value changes.
For a more detailed explanation of the announcement and notification phases of the propagation of value changes, it is recommended read the section about lazy execution.

	The method decorated with announce_condition is evaluated to check if the announcement of a value change shall be propagated.
If the condition evaluates to False, processors further down the processing chain will not be informed about the pending value change, which means, that they will not request this value change to be performed.
In case all end points, which request this value update, (such as manually called output connectors or non-lazy inputs) are behind the conditional input in the processing chain, this means, that also the connectors, which are before the conditional input, are not executed.

	The method decorated with notify_condition is evaluated after executing the input connector to check if the observing output connectors shall be notified about the changed value.
If this evaluation yields False, the pending announcements are canceled, so that downstream connectors do not request an updated value.

4.3.3. Implementing a conditional multi-input connector for the multiplexer

Choosing condition for the multiplexer’s input is trivial.
It should simply check, if the changed input is the one, that is currently selected.
The harder choice is to decide whether to use an announce_condition or a notify_condition.

At first glance, the announce_condition is tempting, because it also avoids the computations, that produce the input value, which is not selected by the multiplexer.
Sadly, these computations cannot generally be avoided, because it is always possible, that the changed value is selected by the multiplexer at a later point in time.
In this case, the output connector of the multiplexer must have been informed about the pending value change, in order to request that value to be updated.
And this announcement has not been sent, if the announce_condition evaluated to False.

Therefore, the multiplexer’s input must specify a notify_condition.

4.3.4. An improved implementation of the multiplexer

>>> import connectors

The following implementation of the improved multiplexer is almost identical to the Multiplexer class from the previous tutorial.
It is only enhanced by the __input_condition() method, which is decorated to become the input() method’s notify_condition.

>>> class Multiplexer:
... def __init__(self, selector=None):
... self.__selector = selector
... self.__data = connectors.MultiInputData()
...
... @connectors.Output()
... def output(self):
... if self.__selector in self.__data:
... return self.__data[self.__selector]
... else:
... return None
...
... @connectors.Input("output")
... def select(self, selector):
... self.__selector = selector
... return self
...
... @connectors.MultiInput("output")
... def input(self, data):
... return self.__data.add(data)
...
... @input.remove
... def remove(self, data_id):
... del self.__data[data_id]
... return self
...
... @input.replace
... def replace(self, data_id, data):
... self.__data[data_id] = data
... return data_id
...
... @input.notify_condition
... def __input_condition(self, data_id, value):
... return data_id == self.__selector

In order to test and demonstrate the avoidance of unnecessary computations, the following test class is implemented:

>>> class Tester:
... @connectors.Input(laziness=connectors.Laziness.ON_ANNOUNCE)
... def input(self, value):
... print("Tester received value:", repr(value))

It has a non-lazy input, which requests the updated value as soon as an update is announced.
And whenever it receives a new value, it prints a message.

In the following test set up, two PassThrough instances are connected to the inputs of a multiplexer, while a Tester instance is connected to its output.
It is now expected, that the tester prints a message, whenever the selected input of the multiplexer changes its value, while it remains silent, when there is a value change in a not-selected input.

>>> source1 = connectors.blocks.PassThrough("value 1")
>>> source2 = connectors.blocks.PassThrough("value 2")
>>> multiplexer = Multiplexer()
>>> tester = Tester()
>>>
>>> _ = source1.output.connect(multiplexer.input[1])
>>> _ = source2.output.connect(multiplexer.input[2])
>>> _ = multiplexer.output.connect(tester.input)

Of course, selecting an input causes the output to be updated, so a message from the tester is expected.

>>> _ = multiplexer.select(1)
Tester received value: 'value 1'

When input 1 is selected, a change of that input’s value shall also trigger a message from the tester.

>>> _ = source1.input("new value 1")
Tester received value: 'new value 1'

But since input 2 is not selected, the tester is not invoked when the value of that input is updated.

>>> _ = source2.input("new value 2")

4.4. Implementing a polynomial (demonstrates the encapsulation of a processing network in a single class with macro connectors)

This tutorial demonstrates the use of the MacroInput and MacroOutput decorators to encapsulate the processing network for computing a polynomial in a single class.

4.4.1. The block diagram representation of a polynomial

A polynomial is a weighted sum of powers of its input variable:

\[y = a + b x + c x^2 + d x^3 + ...\]

This can be organized in a block diagram:

[image: digraph Polynomial{ rankdir=LR; x -> x0 -> a -> sum -> y; x -> x1 -> b -> sum; x -> x2 -> c -> sum; x -> x3 -> d -> sum; x -> xn -> n -> sum; x [label="x", shape=parallelogram]; x0 [label="1", shape=box]; a [label="a", shape=box]; x1 [label="(·)", shape=box]; b [label="·b", shape=box]; x2 [label="(·)²", shape=box]; c [label="·c", shape=box]; x3 [label="(·)³", shape=box]; d [label="·d", shape=box]; xn [label="...", shape=box]; n [label="...", shape=box]; sum [label="+"]; y [label="y", shape=trapezium]; {rank=same; x0, x1, x2, x3, xn}; {rank=same; a, b, c, d, n}; }]

4.4.2. Implementing the basic building blocks: power, multiplication and summation

	As seen in the block diagram, the basic building blocks can be implemented with three processing classes:

	
	one that computes a specified power of its input value

	one that multiplies its input value with a given factor

	one that sums up all its input values

For this task, it would be sufficient, if the exponent of the power and the weighting factor of the multiplication, were constants, that are specified through the constructor of the class.
But assuming, that a project, in which polynomials are computed, would also benefit from processing classes, that compute arbitrary powers and products, the following, more general implementations are used in this tutorial.

>>> import numpy
>>> import connectors

>>> class Power:
... def __init__(self, base=0, exponent=1):
... self.__base = base
... self.__exponent = exponent
...
... @connectors.Output()
... def get_result(self):
... return numpy.power(self.__base, self.__exponent)
...
... @connectors.Input("get_result")
... def set_base(self, base):
... self.__base = base
...
... @connectors.Input("get_result")
... def set_exponent(self, exponent):
... self.__exponent = exponent

>>> class Multiply:
... def __init__(self, factor1=0, factor2=0):
... self.__factor1 = factor1
... self.__factor2 = factor2
...
... @connectors.Output()
... def get_result(self):
... return numpy.multiply(self.__factor1, self.__factor2)
...
... @connectors.Input("get_result")
... def set_factor1(self, factor):
... self.__factor1 = factor
...
... @connectors.Input("get_result")
... def set_factor2(self, factor):
... self.__factor2 = factor

>>> class Sum:
... def __init__(self):
... self.__summands = connectors.MultiInputData()
...
... @connectors.Output()
... def get_result(self):
... return sum(tuple(self.__summands.values()))
...
... @connectors.MultiInput("get_result")
... def add_summand(self, summand):
... return self.__summands.add(summand)
...
... @add_summand.remove
... def remove_summand(self, data_id):
... del self.__summands[data_id]

4.4.3. Implementing the polynomial

The following class implements the computation of a polynomial, by encapsulating the required processing chain and exporting the input and output connectors via macro connectors.
It accepts a sequence of weighting factors (\(a\), \(b\), \(c\), \(d\), … in the block diagram) and instantiates the required processing classes in the for-loop.

>>> class Polynomial:
... def __init__(self, coefficients):
... self.__powers = []
... self.__sum = Sum()
... for e, c in enumerate(coefficients):
... power = Power(exponent=e)
... weighting = Multiply(factor2=c).set_factor1.connect(power.get_result)
... weighting.get_result.connect(self.__sum.add_summand)
... self.__powers.append(power)
...
... @connectors.MacroInput()
... def set_variable(self):
... for p in self.__powers:
... yield p.set_base
...
... @connectors.MacroOutput()
... def get_result(self):
... return self.__sum.get_result

Each iteration of the for-loop in the constructor generates one of the parallel branches, that are shown in the block diagram.
The input of each branch, which is a set_base() connector, is stored in the __powers list.
These input connectors are exported to the interface of the Polynomial class through the set_variable() macro input method.

Storing the output connector of each branch is not necessary, since they are all connected to the summation block.
The output of the summation is exported to the interface of the Polynomial class through the get_result() macro output method.

Note that the methods, that are decorated to become macro connectors, merely return the connectors of the internal processing chain.
These methods will be replaced by macro connectors, that behave like setter or getter methods, so the behavior of macro connectors differs significantly from that of the methods, which they replace.

4.4.4. Using the implementation of the polynomial

The Polynomial class can now be instantiated and used for computations.

>>> polynomial = Polynomial(coefficients=(5.0, -3.0, 2.0)) # y = 2*x**2 - 3*x + 5
>>> polynomial.set_variable(4.0).get_result() # compute the polynomial for a scalar
25.0
>>> polynomial.set_variable([-2, -1, 0, 1, 2]).get_result() # compute the polynomial for elements of an array
array([19., 10., 5., 4., 7.])

Note how the set_variable() and get_result() methods work as actual setter and getter methods, rather than returning connectors and not accepting any parameters.
The get_result() output connector of the polynomial basically mimics the get_result() connector of the summation.
Since the macro input connector represents multiple connectors, all operations on it will be performed with each of these connectors:

	setting a value of a macro input connector, passes that value to all represented connectors.

	changing the behavior of a macro input connector applies the same changes to all represented connectors.

	connecting an output connector to a macro input connector connects that output to all represented connectors.

Also note, that macro input connectors return the instance of the processing class to which they belong, so that setting a parameter and retrieving the updated result can be programmed in one line.

4.5. Improving the polynomial implementation (demonstrates memory saving techniques)

This tutorial shows how to reduce the memory consumption of the polynomial implementation from the previous tutorial by disabling caching and using the WeakrefProxyGenerator class.

4.5.1. The problem of caching intermediate values

The Power and Multiply classes store references to their input parameters.
Also, because these classes are meant to be useful outside the scope of the polynomial computation, the caching of their result value is not disabled.
This leads to all intermediate results of the polynomial to remain in memory, even after the computation of the final result has finished.
Due to the caching of the final result, the intermediate results are no longer needed, once the computation has finished.

4.5.2. Avoiding the caching of intermediate results

The FourierTransform class in the transfer function tutorial has solved the issue of storing its input value, by deleting it in the getter method.
For classes like this, it would be sufficient to disable the caching of the output value, to avoid that intermediate results are stored.
But this solution is only applicable to classes with no more than one input and one output connector, which is not the case with the Power and Multiply classes.

To solve this problem in use cases like this, the Connectors package provides the WeakrefProxyGenerator class, that stores a strong reference to its input value, propagates a weak reference to it through its output connector.
In order to delete the strong reference, once it is no longer needed, this class also provides an input connector, that deletes the strong reference, once the result of the following processing step has been computed.
In combination with disabling the caching of the output connector, that produced the input value for the WeakrefProxyGenerator instance, this causes the input value to be garbage collected.

4.5.3. Block diagram of the improved polynomial implementation

The block diagram of a polynomial implementation, that uses WeakrefProxyGenerators, is shown below.
The WeakrefProxyGenerators are highlighted in red.
Note the backwards dependencies of the WeakrefProxyGenerators on the output of processing classes, by which they are followed.
This is a feedback loop to tell the WeakrefProxyGenerators, that they can delete the strong reference to their input values.

[image: digraph Polynomial{ rankdir=LR; x -> x0 -> wp0 -> a -> wm0 -> sum -> y; a -> wp0; sum -> wm0; x -> x1 -> wp1 -> b -> wm1 -> sum; b -> wp1; sum -> wm1; x -> x2 -> wp2 -> c -> wm2 -> sum; c -> wp2; sum -> wm2; x -> x3 -> wp3 -> d -> wm3 -> sum; d -> wp3; sum -> wm3; x -> xn -> wpn -> n -> wmn -> sum; n -> wpn; sum -> wmn; x [label="x", shape=parallelogram]; x0 [label="1", shape=box]; wp0 [label="wr", shape=box, color=red]; a [label="a", shape=box]; wm0 [label="wr", shape=box, color=red]; x1 [label="(·)", shape=box]; wp1 [label="wr", shape=box, color=red]; b [label="·b", shape=box]; wm1 [label="wr", shape=box, color=red]; x2 [label="(·)²", shape=box]; wp2 [label="wr", shape=box, color=red]; c [label="·c", shape=box]; wm2 [label="wr", shape=box, color=red]; x3 [label="(·)³", shape=box]; wp3 [label="wr", shape=box, color=red]; d [label="·d", shape=box]; wm3 [label="wr", shape=box, color=red]; xn [label="...", shape=box]; wpn [label="...", shape=box, color=red]; n [label="...", shape=box]; wmn [label="...", shape=box, color=red]; sum [label="+"]; y [label="y", shape=parallelogram]; {rank=same; x0, x1, x2, x3, xn}; {rank=same; wp0, wp1, wp2, wp3, wpn}; {rank=same; a, b, c, d, n}; {rank=same; wm0, wm1, wm2, wm3, wmn}; }]

4.5.4. Implementation of the improved polynomial

First, the building blocks of the polynomial have to be defined.
They are identical to the ones from the previous tutorial (and they are only shown here, so the implementation of the improved polynomial can be tested with doctest [https://docs.python.org/3/library/doctest.html#module-doctest]).

>>> import numpy
>>> import connectors
>>>
>>> class Power:
... def __init__(self, base=0, exponent=1):
... self.__base = base
... self.__exponent = exponent
...
... @connectors.Output()
... def get_result(self):
... return numpy.power(self.__base, self.__exponent)
...
... @connectors.Input("get_result")
... def set_base(self, base):
... self.__base = base
...
... @connectors.Input("get_result")
... def set_exponent(self, exponent):
... self.__exponent = exponent
>>>
>>> class Multiply:
... def __init__(self, factor1=0, factor2=0):
... self.__factor1 = factor1
... self.__factor2 = factor2
...
... @connectors.Output()
... def get_result(self):
... return numpy.multiply(self.__factor1, self.__factor2)
...
... @connectors.Input("get_result")
... def set_factor1(self, factor):
... self.__factor1 = factor
...
... @connectors.Input("get_result")
... def set_factor2(self, factor):
... self.__factor2 = factor
>>>
>>> class Sum:
... def __init__(self):
... self.__summands = connectors.MultiInputData()
...
... @connectors.Output()
... def get_result(self):
... return sum(tuple(self.__summands.values()))
...
... @connectors.MultiInput("get_result")
... def add_summand(self, summand):
... return self.__summands.add(summand)
...
... @add_summand.remove
... def remove_summand(self, data_id):
... del self.__summands[data_id]

The implementation of the Polynomial class is conceptually similar to that from the previous tutorial.
But it contains extra lines of code for disabling the caching of the output connectors and for inserting the WeakrefProxyGenerator instances in the processing chain.

>>> class Polynomial:
... def __init__(self, coefficients):
... self.__powers = []
... self.__sum = Sum()
... for e, c in enumerate(coefficients):
... power = Power(exponent=e)
... self.__powers.append(power)
... power.get_result.set_caching(False)
... power_weakref = connectors.blocks.WeakrefProxyGenerator().input.connect(power.get_result)
... weighting = Multiply(factor2=c).set_factor1.connect(power_weakref.output)
... weighting.get_result.set_caching(False)
... weighting.get_result.connect(power_weakref.delete_reference)
... weighting_weakref = connectors.blocks.WeakrefProxyGenerator().input.connect(weighting.get_result)
... weighting_weakref.output.connect(self.__sum.add_summand)
... self.__sum.get_result.connect(weighting_weakref.delete_reference)
...
... @connectors.MacroInput()
... def set_variable(self):
... for p in self.__powers:
... yield p.set_base
...
... @connectors.MacroOutput()
... def get_result(self):
... return self.__sum.get_result

4.5.5. Using the implementation of the polynomial

The usage of the Polynomial is identical to that from the previous tutorial.

>>> polynomial = Polynomial(coefficients=(5.0, -3.0, 2.0)) # y = 2*x**2 - 3*x + 5
>>> polynomial.set_variable(4.0).get_result() # compute the polynomial for a scalar
25.0
>>> polynomial.set_variable([-2, -1, 0, 1, 2]).get_result() # compute the polynomial for elements of an array
array([19., 10., 5., 4., 7.])

 Python Module Index

 c

 		 	

 		
 c	

 	
 	
 connectors	

Index

 _
 | A
 | C
 | D
 | E
 | G
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | W

_

 	
 	__getitem__() (connectors.connectors.MultiInputConnector method)

 	(connectors.connectors.MultiOutputConnector method)

A

 	
 	add() (connectors._common._non_lazy_inputs.NonLazyInputs method)

 	(connectors.MultiInputData method)

 	
 	announce_condition() (connectors.Input method)

 	(connectors.MultiInput method)

C

 	
 	connect() (connectors._common._multiinput_item.MultiInputItem method)

 	(connectors._common._multioutput_item.MultiOutputItem method)

 	(connectors._connectors._baseclasses.InputConnector method)

 	(connectors._proxies.MultiInputProxy method)

 	(connectors._proxies.OutputProxy method)

 	(connectors._proxies.SingleInputProxy method)

 	(connectors._proxies._baseclasses.ConnectorProxy method)

 	(connectors.connectors.Connector method)

 	(connectors.connectors.MacroInputConnector method)

 	(connectors.connectors.MacroOutputConnector method)

 	(connectors.connectors.MultiInputConnector method)

 	(connectors.connectors.MultiOutputConnector method)

 	(connectors.connectors.OutputConnector method)

 	(connectors.connectors.SingleInputConnector method)

 	
 	Connector (class in connectors.connectors)

 	ConnectorProxy (class in connectors._proxies._baseclasses)

 	connectors (module)

D

 	
 	delete_reference() (connectors.blocks.WeakrefProxyGenerator method)

 	disconnect() (connectors._common._multiinput_item.MultiInputItem method)

 	(connectors._common._multioutput_item.MultiOutputItem method)

 	(connectors._connectors._baseclasses.InputConnector method)

 	(connectors.connectors.Connector method)

 	(connectors.connectors.MacroInputConnector method)

 	(connectors.connectors.MacroOutputConnector method)

 	(connectors.connectors.MultiInputConnector method)

 	(connectors.connectors.MultiOutputConnector method)

 	(connectors.connectors.OutputConnector method)

 	(connectors.connectors.SingleInputConnector method)

E

 	
 	execute() (connectors._common._non_lazy_inputs.NonLazyInputs method)

 	
 	Executor (class in connectors._common._executors)

 	executor() (in module connectors)

G

 	
 	get_event_loop() (connectors._common._executors.Executor method)

 	(connectors._common._executors.MultiprocessingExecutor method)

 	(connectors._common._executors.SequentialExecutor method)

 	(connectors._common._executors.ThreadingExecutor method)

 	(connectors._common._executors.ThreadingMultiprocessingExecutor method)

I

 	
 	Input (class in connectors)

 	input() (connectors.blocks.Multiplexer method)

 	(connectors.blocks.PassThrough method)

 	(connectors.blocks.WeakrefProxyGenerator method)

 	
 	InputConnector (class in connectors._connectors._baseclasses)

K

 	
 	key() (connectors._common._multioutput_item.MultiOutputItem method)

L

 	
 	Laziness (class in connectors)

M

 	
 	MacroInput (class in connectors)

 	MacroInputConnector (class in connectors.connectors)

 	MacroOutput (class in connectors)

 	MacroOutputConnector (class in connectors.connectors)

 	MultiInput (class in connectors)

 	MultiInputAssociateDescriptor (class in connectors._common._multiinput_associate)

 	MultiInputAssociateProxy (class in connectors._common._multiinput_associate)

 	
 	MultiInputConnector (class in connectors.connectors)

 	MultiInputData (class in connectors)

 	MultiInputItem (class in connectors._common._multiinput_item)

 	MultiInputProxy (class in connectors._proxies)

 	MultiOutputConnector (class in connectors.connectors)

 	MultiOutputItem (class in connectors._common._multioutput_item)

 	Multiplexer (class in connectors.blocks)

 	MultiprocessingExecutor (class in connectors._common._executors)

N

 	
 	NonLazyInputs (class in connectors._common._non_lazy_inputs)

 	
 	notify_condition() (connectors.Input method)

 	(connectors.MultiInput method)

O

 	
 	Output (class in connectors)

 	output() (connectors.blocks.Multiplexer method)

 	(connectors.blocks.PassThrough method)

 	(connectors.blocks.WeakrefProxyGenerator method)

 	
 	OutputConnector (class in connectors.connectors)

 	OutputProxy (class in connectors._proxies)

P

 	
 	Parallelization (class in connectors)

 	
 	PassThrough (class in connectors.blocks)

R

 	
 	remove() (connectors.blocks.Multiplexer method)

 	(connectors.MultiInput method)

 	replace() (connectors.blocks.Multiplexer method)

 	(connectors.MultiInput method)

 	run_coroutine() (connectors._common._executors.Executor method)

 	(connectors._common._executors.MultiprocessingExecutor method)

 	(connectors._common._executors.SequentialExecutor method)

 	(connectors._common._executors.ThreadingExecutor method)

 	(connectors._common._executors.ThreadingMultiprocessingExecutor method)

 	run_coroutines() (connectors._common._executors.Executor method)

 	(connectors._common._executors.MultiprocessingExecutor method)

 	(connectors._common._executors.SequentialExecutor method)

 	(connectors._common._executors.ThreadingExecutor method)

 	(connectors._common._executors.ThreadingMultiprocessingExecutor method)

 	
 	run_method() (connectors._common._executors.Executor method)

 	(connectors._common._executors.MultiprocessingExecutor method)

 	(connectors._common._executors.SequentialExecutor method)

 	(connectors._common._executors.ThreadingExecutor method)

 	(connectors._common._executors.ThreadingMultiprocessingExecutor method)

 	run_until_complete() (connectors._common._executors.Executor method)

 	(connectors._common._executors.MultiprocessingExecutor method)

 	(connectors._common._executors.SequentialExecutor method)

 	(connectors._common._executors.ThreadingExecutor method)

 	(connectors._common._executors.ThreadingMultiprocessingExecutor method)

S

 	
 	SequentialExecutor (class in connectors._common._executors)

 	set_caching() (connectors._proxies.OutputProxy method)

 	(connectors.connectors.MacroOutputConnector method)

 	(connectors.connectors.MultiOutputConnector method)

 	(connectors.connectors.OutputConnector method)

 	set_executor() (connectors._connectors._baseclasses.InputConnector method)

 	(connectors._proxies.MultiInputProxy method)

 	(connectors._proxies.OutputProxy method)

 	(connectors._proxies.SingleInputProxy method)

 	(connectors._proxies._baseclasses.ConnectorProxy method)

 	(connectors.connectors.Connector method)

 	(connectors.connectors.MacroInputConnector method)

 	(connectors.connectors.MacroOutputConnector method)

 	(connectors.connectors.MultiInputConnector method)

 	(connectors.connectors.MultiOutputConnector method)

 	(connectors.connectors.OutputConnector method)

 	(connectors.connectors.SingleInputConnector method)

 	set_laziness() (connectors._connectors._baseclasses.InputConnector method)

 	(connectors._proxies.MultiInputProxy method)

 	(connectors._proxies.SingleInputProxy method)

 	(connectors.connectors.MacroInputConnector method)

 	(connectors.connectors.MultiInputConnector method)

 	(connectors.connectors.SingleInputConnector method)

 	
 	set_parallelization() (connectors._connectors._baseclasses.InputConnector method)

 	(connectors._proxies.MultiInputProxy method)

 	(connectors._proxies.OutputProxy method)

 	(connectors._proxies.SingleInputProxy method)

 	(connectors._proxies._baseclasses.ConnectorProxy method)

 	(connectors.connectors.Connector method)

 	(connectors.connectors.MacroInputConnector method)

 	(connectors.connectors.MacroOutputConnector method)

 	(connectors.connectors.MultiInputConnector method)

 	(connectors.connectors.MultiOutputConnector method)

 	(connectors.connectors.OutputConnector method)

 	(connectors.connectors.SingleInputConnector method)

 	SingleInputConnector (class in connectors.connectors)

 	SingleInputProxy (class in connectors._proxies)

T

 	
 	ThreadingExecutor (class in connectors._common._executors)

 	
 	ThreadingMultiprocessingExecutor (class in connectors._common._executors)

W

 	
 	WeakrefProxyGenerator (class in connectors.blocks)

 _images/transfer_function2.png
100

1071

1072

1073

10?

10°

10¢

_static/ajax-loader.gif

_images/graphviz-f915d9410f00101bc1a8e0daa8385e08df01e734.png
pl.input pl.output p2.input p2.output

announce ' announce

announce

request ' request
execute
notify .
2 notify

o
&
H
g
a

_images/transfer_function1.png
100

1071

1073

10?

10°

10¢

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_images/graphviz-5a7290a270b9c268183963ccf6f4894128c82c9e.png
wr a wr
©) wr b wr
/ x 02 wr © wr
[0F wr -d wr

_images/graphviz-c2afbb77a75a3f282fd2e15e9f399c8ca520c72c.png
impulse response

Fourier transform

inverse Fourier transform

_images/graphviz-15db897e3dc45c2be9563d780a390a9e56cc84c2.png
selected

_images/graphviz-2f9283f1ed4b54fa0df822791a1256ddda33dfce.png
Signal generator

_images/graphviz-e9fb9f6248de77c60166fd2d5089159469fb8f77.png
5]

5]

nav.xhtml

 Table of Contents

 		
 Welcome to Connectors’ documentation!

 		
 Reference

 		
 Decorators

 		
 Connectors

 		
 Connectors for setter methods

 		
 Connectors for getter methods

 		
 Configuration options

 		
 Automated parallelization

 		
 Configuring the laziness

 		
 Helper functionalities

 		
 Macro connectors for encapsulating processing networks in a class

 		
 Decorating methods

 		
 Configuring macro connectors

 		
 Processing blocks for common tasks

 		
 Routing data in a processing network

 		
 Reducing the memory consumption

 		
 Internal features

 		
 Common helper classes

 		
 Connector base classes

 		
 Executors

 		
 Proxy classes

 		
 Virtual single-connectors

 		
 Organisation

 		
 Installation

 		
 pip

 		
 Installation from source

 		
 Dependencies

 		
 Python version

 		
 Other packages and tools

 		
 Makefile targets

 		
 Licenses

 		
 LGPLv3+ for the source code

 		
 CC0 for the documentation

 		
 Information

 		
 Lazy execution

 		
 An example script

 		
 Disabling lazy execution

 		
 Caching

 		
 Automated parallelization

 		
 The default settings

 		
 The parallelization parameter

 		
 Executors

 		
 Implementation details

 		
 asyncio

 		
 Connector proxies - avoiding circular references

 		
 Tutorials

 		
 Measuring a transfer function (demonstrates the core functionalities)

 		
 What is a transfer function

 		
 Defining a system, of which the tranfer function shall be measured

 		
 Generation of a measurement signal

 		
 Computation of the fourier transform

 		
 Computation of the transfer function

 		
 Ploting the transfer function

 		
 Instantiating the processing network

 		
 The complete script

 		
 Impementing a multiplexer (demonstrates the use of a multi-input connector as arbitrarily many single-input connectors)

 		
 What is a multiplexer

 		
 Arbitrarily many input connectors

 		
 Implementation of the multiplexer

 		
 Usage of the multiplexer

 		
 Restrictions and requirements for virtual single-input connectors

 		
 Improving the multiplexer (demonstrates avoiding unneccessary computations with conditional input connectors)

 		
 Situations, in which unnecessary computations occur

 		
 Conditions for the input connectors

 		
 Implementing a conditional multi-input connector for the multiplexer

 		
 An improved implementation of the multiplexer

 		
 Implementing a polynomial (demonstrates the encapsulation of a processing network in a single class with macro connectors)

 		
 The block diagram representation of a polynomial

 		
 Implementing the basic building blocks: power, multiplication and summation

 		
 Implementing the polynomial

 		
 Using the implementation of the polynomial

 		
 Improving the polynomial implementation (demonstrates memory saving techniques)

 		
 The problem of caching intermediate values

 		
 Avoiding the caching of intermediate results

 		
 Block diagram of the improved polynomial implementation

 		
 Implementation of the improved polynomial

 		
 Using the implementation of the polynomial

_images/graphviz-0337eba8be7669a9b6953ec6f5820c19eecba684.png
04

04

_static/plus.png

_images/graphviz-0a7a64b9b053fdc4984dc2a244f99363f1e2f884.png
Signal generator

Impulse response

—» FFT

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

